Red Hat Enterprise Linux 5

SystemTap
Tapset Reference

For SystemTap in Red Hat Enterprise Linux 5

Q® redhat.

William Cohen

Don Domingo

SystemTap Tapset Reference

Red Hat Enterprise Linux 5 SystemTap Tapset Reference
For SystemTap in Red Hat Enterprise Linux 5

Edition 1
Author William Cohen wcohen@redhat.com
Author Don Domingo ddomingo@redhat.com

This documentation is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: ; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

The Tapset Reference Guide describes the most common tapset definitions users can apply to
SystemTap scripts. All included tapsets documented in this guide are current as of the latest upstream
version of SystemTap.

mailto:wcohen@redhat.com
mailto:ddomingo@redhat.com

Preface vii
1. DOCUMENT CONVENTIONS ...uiiiitiieeeiit e ettt e e ettt s e e ettt e e et e e e e et r e e e eat e e e eett e eeeettnaeeeesenaeeeees vii
1.1. TypographiC CONVENTIONSuiiiiiiiii e e e e e e e e e e e e e anaas vii

1.2. PUll-QUOtE CONVENTIONSiitiiiiiiiei ettt e e e et e e e et eebn e eanaaees viii

1.3. NOtES ANd WAIMINGS ...oeiiiieiiiii ettt e et e e et e e enaas iX

2. Getting Help and Giving Feedback ... (¢
2.1. DO YOU NEEd HEIP? . (¢

2.2. We Need Feedback! ..o X

1. Introduction 1
I B To Tod W [g [=T 0] = Vio] T o T= 1L P 1
2. Tapset Development Guidelines 3
2.1, WItING GOOA TAPSELSeeuiiiiin ettt et et e e et e e et e e et e e et e e e e aeanns 3
2.2. EIEMENLS OF @ TAPSEL ...uiiiiiiiei ittt et e e et e e eee 4
2.2, TAPSEL FIlES ..t 4
2.2.2. NAMESPACE .. eeeeiei ettt et et et n et et e 4
2.2.3. Comments and DOCUMENLALIONuviiiiiiiieiiiiii e eeai e eens 4

3. Context Functions 7
O] 1S =10 OO POPPPTROPPIN 7
LSS 1 = T PP 7
0o 7
Lo PP 7
o] oo PP OPPR 8
6| o PP 8
£ o 8
0123 (=T o F=T 0 1 PP 9
oo 9
=0 1o P 9
o TP 9
=T o PP 10
o7 015 PP 10
O] o PP 10
(=0 1S3 (=T £ T 11T 11
0T o [o = 11
1S3 (= (0 P 11
162 10 Y PPN 12
SEBCK _SIZ8 ettt ettt 12
L] 7= Lod Q1 L= o PP 12
£ €= Lo G ¥ [T £ =T o 12
D= To o | PPN 13
11101] = T SRR 13
PrODETUNC ..o et 13
PrODEIMOA ..o ettt 14
70 | = U = 14
5377 1410 F=T0 1= PP PP 14
)71 = L= 15
5] 00T F=T0 1T PP UPTPPTN 15
0130010 F= L= R PP P PR TOPPPTTRN 16
o1 01 S U3 7= Lo PP PRSPPI 16
PHNE_DACKITACE ...eeiiiiii e e ettt e et e e 16
07 Tod 141 = Lot PR 17
o= 1 T PP 17
o= 1|1 = o o | PP 17

SystemTap Tapset Reference

PHNE_UDACKITACE ...oeti ittt e et e et e e eeaans
UDBCKITABCE ...ttt e et e e et

4. Timestamp Functions

Lo 1= A 03 o (=

5. Memory Tapset

VIM_TAUIL CONTAINS ..ot e e e e e e e e e e e e e anaeen
VIMLPAGETAUIL ...t et e et e et e e e e e e e et e e
VM. PAGETAUILTETUIN ..oee ettt e et ettt e e e e et e e eenanneeees
= To [o | g (o T 1 [0 o [PPSR
A7 IR (T 1 = =T S
AV RV (] = =T [o] o)
1740210 F= T o PP
Y400 10 T 1 = o S
1YL o SRR
VIMLOOML_KIIl Lo e ettt e e e e e et e e s

6. 10 Scheduler Tapset

I0SChedUIEr.EIV_NEXE FEQUESE ...ttt e e eeaa e
ioscheduler.elv_Next reqUEST.FELUINc...iii e e e e e e e e e e aenas
ioscheduler.elv_add _FEOUESTciiiiiiii e e e e eaaaas
ioscheduler.elv_completed_rEQUESToiei i

7. SCSI Tapset

(ot L0] 011 Y USRI
SCSLIOAISPALCNING ...eeeeiee it e et
£ 01 1HT0 T [0 1=
LS I 0Tt o] 1] o] =3 =T o

8. Networking Tapset

LTS (0 YA LT ot P
(L= (0 (oA A = T 1] 0 PP UP PPN
(o =TT 0 To [0 1T PP
1003 o JEST=T T 4 g TSTo TN (=] (1] o T
L0030 (=T oAV a1 S
(T N LTV g [T T =] (1] o PP
Lo o o 1Yo] = ox (P
Lo o 2 [£=Y oo o [T o =1 (10 o o
(o JR=T=] Y0 T0d (o] o | PP PPTUPTRN
(03 o JEY=] KTo o) (o] o 8 =1 10 Lo o ISP
(0 o (=TT PP PRT
8T [TS =Y o T L4 o
(UL [JST=Y g L g TSTo = (0 L TS
L8 T | =027 0 o P
(Ulol o g=ToaV 4o LYo N = (0|1 o TP
(B0 | o)0 [K<ToTo] o] o =T ot APPSR
[§To | o) [K<ToTo] o] o L=Tot M =110 o o JRO PP UPPPT
] T 1 0] o

9. Socket Tapset

SOCKEE.SEINA ...ttt e
SOCKEL.FECRIVE ..ttt e e et e e e e e et e bbb e e e e e e e e rnr e e e e
SOCKET. SENAMSY ...ttt e ettt e e e e e et et e et e e en e eaa e
SOCKET.SENAMIS.FEIUIM ...ttt ettt e e e e e e
o0 (S A (=T Y 0 T TP UPPPTPR PPN
Y0108 (oA 4 EYo =1 (0 TSP

S0 ol 1 o= V(o TR (= PRSP
Y0 Tod 1Y = (o T 1 (= 8 (=1 (0 [o R
Y0 Tod (=Y - 1o T == (o [
LYo Te) L= = Vo T (== o 1N =Y (U TP
LST0T0d =] AT 1 = PP
Y010 G AT LGNV A (=3 (U] o PP
[oTe] G- M (== 1o AV PSRN
o lod (S = T= (o VA T 11] TSP

10103 L] Ao (<= (=

SOCKEL.CIBALE.FELUIN ...ttt et et ettt e e e et e et e e e e e et e e eaneaeens
LYo T0d =] ol (01T PP
SOCKEL. CIOSE. TBIUIN .ottt e et et e e e e e e e et e et e et e et e e e et e eaeeneees
S0 o L o] (o] A [0V 1 SRR UPR
£ Lo [o] (o 1 A=) 722 1 T2 P
Yo To (O =V T 10 12 N
LYo Tod [=10 1 1 724 1V 2

(Yo Lod TS = L (=T 10 4122 (PPN
ST Tod] r= L (= 1 1 724 2 T N

10. Kernel Process Tapset
0T ToTcET ST == =
(0 ToT TSI - 1 o
K TOCESS.EXEC .ttt ettt ettt et et et e e e et e e e ean e aaen
KProCESS.EXEC_COMPIBLE ...ttt ettt e e e e e eaees
KPIOCESS.EXIT ...t ettt e e e e s
KPIOCESS.TEIBASE ... ettt e e e e et e e et s

11. Signal Tapset
£ T [F= | IR T= o o U
ST To g o IR=] o o =] (0 o R PPN
SIGNAL.CRECKPEIM .o ettt et e e e e e e e s
SIGNAL.CHECKPEIMLIEIUIN L..i ittt et eea e e e enenns
SIGNALWEAKEUD ... ettt e et e e et e e et e e e et eeat e ene
£ T [= | I o] a =T o) S T [T = o P

YT g F= el a=Tod S T T =T 1 £ =1 11] 4 o IS

S o oL (o] fof Y= o | TP
SIGNALTOICE_SEOV.FEIUIM ...ttt ettt e et eeeba s
SIGNALSYSKII ... e
SIGNALSYSKIILIEIUIN .ee e e et e e e e et e e eate e eeees
SIONALSYS Kl oeeieiee e e
SIGNALSYSIKIILIEIUIN ..ooeii e e e e e e e e et e e et e e ean s
SIONALSYS_TOKIIl ... e e
SIGNALSYS_TGKIILFEIUIN ...ttt e et e et e e e e et e e eenbn e eeens
SIGNALSENU_SIG_QUEUE ...ttt et e e e et e et e e e et e e e eaa e
SIgNAL.SENA_SIG_QUEUE.FETUII ...iiiit ittt et e et e et e et e e e et e e e eran s
£ T L= 1 o =1 Lo 11T
YT g F= U o L= a o [1aTo A = (U 14 TSN
SIGNALNANAIE ... e e e e e e a e
SIGNALNANAIE.FEIUIN ..ot ettt e e e e e
ST [g F= 1o [o I 1o 1o o KSR UPPPTTRPPPN
ST g t= 1o [= Tex (o o N =] (1] o TSP
£ T Tz L o] o Tod 4= 1) G
SIONALTIUSN oo e

A. Revision History

Vi

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts" set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences - Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

! https://fedorahosted.org/liberation-fonts/

Vii

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications - Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit — Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

viii

Notes and Warnings

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http.//access.redhat.com. Through the customer portal, you can:

» search or browse through a knowledgebase of technical support articles about Red Hat products.
» submit a support case to Red Hat Global Support Services (GSS).
 access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives. ix

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo

Preface

2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http:/bugzilla.redhat.com/
against the product Red_Hat_Enterprise_Linux.

When submitting a bug report, be sure to mention the manual's identifier: Tapset_Reference_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/

Chapter 1.

Introduction

SystemTap provides free software (GPL) infrastructure to simplify the gathering of information about
the running Linux system. This assists diagnosis of a performance or functional problem. SystemTap
eliminates the need for the developer to go through the tedious and disruptive instrument, recompile,
install, and reboot sequence that may be otherwise required to collect data.

SystemTap provides a simple command line interface and scripting language for writing
instrumentation for a live, running kernel. This instrumentation uses probe points and functions
provided in the tapset library.

Simply put, tapsets are scripts that encapsulate knowledge about a kernel subsystem into pre-written
probes and functions that can be used by other scripts. Tapsets are analogous to libraries for C
programs. They hide the underlying details of a kernel area while exposing the key information needed
to manage and monitor that aspect of the kernel. They are typically developed by kernel subject-
matter experts.

A tapset exposes the high-level data and state transitions of a subsystem. For the most part, good
tapset developers assume that SystemTap users know little to nothing about the kernel subsystem's
low-level details. As such, tapset developers write tapsets that help ordinary SystemTap users write
meaningful and useful SystemTap scripts.

1.1. Documentation Goals

This guide aims to document SystemTap's most useful and common tapset entries; it also contains
guidelines on proper tapset development and documentation. The tapset definitions contained in this
guide are extracted automatically from properly-formatted comments in the code of each tapset file. As
such, any revisions to the definitions in this guide should be applied directly to their respective tapset
file.

Chapter 2.

Tapset Development Guidelines

This chapter describes the upstream guidelines on proper tapset documentation. It also contains
information on how to properly document your tapsets, to ensure that they are properly defined in this
guide.

2.1. Writing Good Tapsets

The first step to writing good tapsets is to create a simple model of your subject area. For example, a
model of the process subsystem might include the following:

Key Data
e process ID

e parent process ID

* process group ID

State Transitions
» forked

* exec'd
* running
 stopped

* terminated

@roe

Both lists are examples, and are not meant to represent a complete list.

Use your subsystem expertise to find probe points (function entries and exits) that expose the
elements of the model, then define probe aliases for those points. Be aware that some state
transitions can occur in more than one place. In those cases, an alias can place a probe in multiple
locations.

For example, process execs can occur in either the do_execve() or the compat_do_execve()
functions. The following alias inserts probes at the beginning of those functions:

probe kprocess.exec = kernel.function("do_execve"),
kernel.function("compat_do_execve")
{probe body}

Try to place probes on stable interfaces (i.e., functions that are unlikely to change at the interface
level) whenever possible. This will make the tapset less likely to break due to kernel changes. Where
kernel version or architecture dependencies are unavoidable, use preprocessor conditionals (see the
stap(1) man page for details).

Fill in the probe bodies with the key data available at the probe points. Function entry probes
can access the entry parameters specified to the function, while exit probes can access the entry

Chapter 2. Tapset Development Guidelines

parameters and the return value. Convert the data into meaningful forms where appropriate (e.g.,
bytes to kilobytes, state values to strings, etc).

You may need to use auxiliary functions to access or convert some of the data. Auxiliary functions
often use embedded C to do things that cannot be done in the SystemTap language, like access
structure fields in some contexts, follow linked lists, etc. You can use auxiliary functions defined in
other tapsets or write your own.

In the following example, copy_process() returns a pointer to the task_struct for the new
process. Note that the process ID of the new process is retrieved by calling task_pid() and passing
it the task_struct pointer. In this case, the auxiliary function is an embedded C function defined in
task.stp.

probe kprocess.create = kernel.function("copy_process").return

{

task = $return
new_pid = task_pid(task)
}

It is not advisable to write probes for every function. Most SystemTap users will not need or
understand them. Keep your tapsets simple and high-level.

2.2. Elements of a Tapset

The following sections describe the most important aspects of writing a tapset. Most of the content
herein is suitable for developers who wish to contribute to SystemTap's upstream library of tapsets.

2.2.1. Tapset Files

Tapset files are stored in src/tapset/ of the SystemTap GIT directory. Most tapset files are kept
at that level. If you have code that only works with a specific architecture or kernel version, you may
choose to put your tapset in the appropriate subdirectory.

Installed tapsets are located in /usr/share/systemtap/tapset/ or /usr/local/share/
systemtap/tapset.

Personal tapsets can be stored anywhere. However, to ensure that SystemTap can use them, use -I
tapset_directory to specify their location when invoking stap.

2.2.2. Namespace

Probe alias names should take the form tapset_name. probe_name. For example, the probe for
sending a signal could be named signal.send.

Global symbol names (probes, functions, and variables) should be unique accross all tapsets. This
helps avoid namespace collisions in scripts that use multiple tapsets. To ensure this, use tapset-
specific prefixes in your global symbols.

Internal symbol names should be prefixed with an underscore (_).

2.2.3. Comments and Documentation

All probes and functions should include comment blocks that describe their purpose, the data they
provide, and the context in which they run (e.g. interrupt, process, etc). Use comments in areas where
your intent may not be clear from reading the code.

Comments and Documentation

Note that specially-formatted comments are automatically extracted from most tapsets and included
in this guide. This helps ensure that tapset contributors can write their tapset and document it in the
same place. The specified format for documenting tapsets is as follows:

*

*

For

/*
*

*

*

*

probe tapset.name - Short summary of what the tapset does.
@argument: Explanation of argument.
@argument2: Explanation of argument2. Probes can have multiple arguments.

Context:
A brief explanation of the tapset context.
Note that the context should only be 1 paragraph short.

Text that will appear under "Description."
A new paragraph that will also appear under the heading "Description".

Header:
A paragraph that will appear under the heading "Header".
*/

example:

*

probe vm.write_shared_copy- Page copy for shared page write.
@address: The address of the shared write.
@zero: Boolean indicating whether it is a zero page

(can do a clear instead of a copy).

Context:
The process attempting the write.

Fires when a write to a shared page requires a page copy. This is
always preceded by a vm.shared_write.
*/

To override the automatically-generated Synopsis content, use:

*
*

*

For

/*
*
*
*
*
*
k
*

*

Itis

Synopsis:
New Synopsis string

example:

*

probe signal.handle - Fires when the signal handler is invoked
@sig: The signal number that invoked the signal handler

Synopsis:

<programlisting>static int handle_signal(unsigned long sig, siginfo_t *info, struct
_sigaction *ka,

sigset_t *oldset, struct pt_regs * regs)</programlisting>

/

recommended that you use the <programlisting> tag in this instance, since overriding the

Synopsis content of an entry does not automatically form the necessary tags.

Chapter 2. Tapset Development Guidelines

For the purposes of improving the DocBook XML output of your comments, you can also use the
following XML tags in your comments:

e command
* emphasis
* programlisting

* remark (tagged strings will appear in Publican beta builds of the document)

Chapter 3.

Context Functions

The context functions provide additional information about where an event occurred. These functions
can provide information such as a backtrace to where the event occured and the current register
values for the processor.

Name
print_regs — Print a register dump.

Synopsis

function print_regs()

Arguments
None

Name
exechame — Returns the execname of a target process (or group of processes).

Synopsis

function execname:string()

Arguments
None

Name
pid — Returns the ID of a target process.

Synopsis

function pid:long()

Arguments
None

Name
tid — Returns the thread ID of a target process.

Chapter 3. Context Functions

Synopsis

function tid:long()

Arguments
None

Name
ppid — Returns the process ID of a target process's parent process.

Synopsis

function ppid:long()

Arguments
None

Name
pgrp — Returns the process group ID of the current process.

Synopsis

function pgrp:long()

Arguments
None

Name
sid — Returns the session ID of the current process.

Synopsis

function sid:long()

Arguments
None

Description

The session ID of a process is the process group ID of the session leader. Session ID is stored in the
signal_struct since Kernel 2.6.0.

Name
pexecname — Returns the exechame of a target process's parent process.

Synopsis

function pexecname:string()

Arguments
None

Name
gid — Returns the group ID of a target process.

Synopsis

function gid:long()

Arguments
None

Name
egid — Returns the effective gid of a target process.

Synopsis

function egid:long()

Arguments
None

Name
uid — Returns the user ID of a target process.

Synopsis

Chapter 3. Context Functions

function uid:long()

Arguments
None

Name
euid — Return the effective uid of a target process.

Synopsis

function euid:long()

Arguments
None

Name
cpu — Returns the current cpu number.

Synopsis

function cpu:long()

Arguments
None

Name
pp — Return the probe point associated with the currently running probe handler,

Synopsis

function pp:string()

Arguments
None

Description
including alias and wildcard expansion effects

Context
The current probe point.

10

Name
registers_valid — Determines validity of register and u_register in current context.

Synopsis

function registers_valid:long()

Arguments
None

Description

Return 1 if register and u_register can be used in the current context, or O otherwise. For
example, registers_valid returns O when called from a begin or end probe.

Name
user_mode — Determines if probe point occurs in user-mode.

Synopsis

function user_mode:long()

Arguments
None

Description
Return 1 if the probe point occurred in user-mode.

Name
is_return — Determines if probe point is a return probe.

Synopsis

function is_return:long()

Arguments
None

Description
Return 1 if the probe point is a return probe. Deprecated.

11

Chapter 3. Context Functions

Name
target — Return the process ID of the target process.

Synopsis

function target:long()

Arguments
None

Name
stack_size — Return the size of the kernel stack.

Synopsis

function stack_size:long()

Arguments
None

Name
stack_used — Returns the amount of kernel stack used.

Synopsis

function stack_used:long()

Arguments
None

Description
Determines how many bytes are currently used in the kernel stack.

Name
stack_unused — Returns the amount of kernel stack currently available.

Synopsis

function stack_unused:long()

12

Arguments
None

Description
Determines how many bytes are currently available in the kernel stack.

Name
uaddr — User space address of current running task. EXPERIMENTAL.

Synopsis

function uaddr:long()

Arguments
None

Description

Returns the address in userspace that the current task was at when the probe occured. When the
current running task isn't a user space thread, or the address cannot be found, zero is returned. Can
be used to see where the current task is combined with usymname or symdata. Often the task will be
in the VDSO where it entered the kernel. FIXME - need VDSO tracking support #10080.

Name
print_stack — Print out stack from string.

Synopsis

function print_stack(stk:string)

Arg uments
stk
String with list of hexidecimal addresses.

Description

Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a
prior call to backtrace.

Print one line per address, including the address, the name of the function containing the address, and
an estimate of its position within that function. Return nothing.

Name
probefunc — Return the probe point's function name, if known.

13

Chapter 3. Context Functions

Synopsis

function probefunc:string()

Arguments
None

Name
probemod — Return the probe point's module name, if known.

Synopsis

function probemod:string()

Arguments
None

Name
modname — Return the kernel module name loaded at the address.

Synopsis

function modname:string(addr:long)

Arguments

addr
The address.

Description

Returns the module name associated with the given address if known. If not known it will return the
string “<unknown>". If the address was not in a kernel module, but in the kernel itself, then the string
“kernel” will be returned.

Name
symname — Return the symbol associated with the given address.

Synopsis

14

function symname:string(addr:long)

Arguments
addr
The address to translate.

Description

Returns the (function) symbol name associated with the given address if known. If not known it will
return the hex string representation of addr.

Name
symdata — Return the symbol and module offset for the address.

Synopsis

function symdata:string(addr:long)

Arguments

addr
The address to translate.

Description

Returns the (function) symbol name associated with the given address if known, plus the module
name (between brackets) and the offset inside the module, plus the size of the symbol function. If any
element is not known it will be ommitted and if the symbol name is unknown it will return the hex string
for the given address.

Name
usymname — Return the symbol of an address in the current task. EXPERIMENTAL!

Synopsis

function usymname:string(addr:long)

Arguments
addr
The address to translate.

Description

Returns the (function) symbol name associated with the given address if known. If not known it will
return the hex string representation of addr.

15

Chapter 3. Context Functions

Name
usymdata — Return the symbol and module offset of an address. EXPERIMENTAL!

Synopsis

function usymdata:string(addr:long)

Arguments

addr
The address to translate.

Description

Returns the (function) symbol name associated with the given address in the current task if known,
plus the module name (between brackets) and the offset inside the module (shared library), plus the
size of the symbol function. If any element is not known it will be ommitted and if the symbol name is
unknown it will return the hex string for the given address.

Name
print_ustack — Print out stack for the current task from string. EXPERIMENTAL!

Synopsis

function print_ustack(stk:string)

Arguments
stk
String with list of hexidecimal addresses for the current task.

Description

Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a
prior call to ubacktrace for the current task.

Print one line per address, including the address, the name of the function containing the address, and
an estimate of its position within that function. Return nothing.

Name
print_backtrace — Print stack back trace

Synopsis

function print_backtrace()

16

Arguments
None

Description

Equivalent to print_stack(backtrace), except that deeper stack nesting may be supported.
Return nothing.

Name
backtrace — Hex backtrace of current stack

Synopsis

function backtrace:string()

Arguments
None

Description

Return a string of hex addresses that are a backtrace of the stack. Output may be truncated as per
maximum string length.

Name
caller — Return name and address of calling function

Synopsis

function caller:string()

Arguments
None

Description
Return the address and name of the calling function.

This is equivalent to calling
sprintf(“s Oxx”, symname(caller_addr, caller_addr)) Works only for return probes at this time.

Name
caller_addr — Return caller address

17

Chapter 3. Context Functions

Synopsis

function caller_addr:long()

Arguments
None

Description
Return the address of the calling function. Works only for return probes at this time.

Name
print_ubacktrace — Print stack back trace for current task. EXPERIMENTAL!

Synopsis

function print_ubacktrace()

Arguments
None

Description

Equivalent to print_ustack(ubacktrace), except that deeper stack nesting may be supported.
Return nothing.

Name
ubacktrace — Hex backtrace of current task stack. EXPERIMENTAL!

Synopsis

function ubacktrace:string()

Arguments
None

Description

Return a string of hex addresses that are a backtrace of the stack of the current task. Output may
be truncated as per maximum string length. Returns empty string when current probe point cannot
determine user backtrace.

18

Chapter 4.

Timestamp Functions

Each timestamp function returns a value to indicate when a function is executed. These returned
values can then be used to indicate when an event occurred, provide an ordering for events, or
compute the amount of time elapsed between two time stamps.

Name
get_cycles — Processor cycle count.

Synopsis

function get_cycles:long()

Arguments
None

Description
Return the processor cycle counter value, or 0 if unavailable.

19

20

Chapter 5.

Memory Tapset

This family of probe points is used to probe memory-related events. It contains the following probe
points:

Name
vm_fault_contains — Test return value for page fault reason

Synopsis

function vm_fault_contains:long(value:long, test:long)

Arguments

value
The fault_type returned by vm.page_fault.return

test
The type of fault to test for (VM_FAULT_OOM or similar)

Name
vm.pagefault — Records that a page fault occurred.

Synopsis

vm.pagefault

Values
write_access

Indicates whether this was a write or read access; 1 indicates a write, while 0 indicates a read.

address
The address of the faulting memory access; i.e. the address that caused the page fault.

Context
The process which triggered the fault

Name
vm.pagefault.return — Indicates what type of fault occurred.

Synopsis

vm.pagefault.return

21

Chapter 5. Memory Tapset

Values

fault_type
Returns either ® (VM_FAULT_OOM) for out of memory faults, 2 (VM_FAULT_MINOR) for minor
faults, 3 (VM_FAULT_MAJOR) for major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither
OOM, minor fault, nor major fault.

Name
addr_to_node — Returns which node a given address belongs to within a NUMA system.

Synopsis

function addr_to_node:long(addr:long)

Arguments
addr
The address of the faulting memory access.

Name
vm.write_shared — Attempts at writing to a shared page.

Synopsis

vm.write_shared

Values

address
The address of the shared write.

Context
The context is the process attempting the write.

Description

Fires when a process attempts to write to a shared page. If a copy is necessary, this will be followed
by avm.write_shared_copy.

Name
vm.write_shared_copy — Page copy for shared page write.

Synopsis

vm.write_shared_copy

22

Values
zero
Boolean indicating whether it is a zero page (can do a clear instead of a copy).

address
The address of the shared write.

Context
The process attempting the write.

Description

Fires when a write to a shared page requires a page copy. This is always preceded by a
vm.shared_write.

Name
vm.mmap — Fires when an mmap is requested.

Synopsis

vm . mmap

Values
length
The length of the memory segment

address
The requested address

Context
The process calling mmap.

Name
vm.munmap — Fires when an munmap is requested.

Synopsis

vm. munmap

Values

length
The length of the memory segment

23

Chapter 5. Memory Tapset

address
The requested address

Context
The process calling munmap.

Name
vm.brk — Fires when a brk is requested (i.e. the heap will be resized).

Synopsis

vm.brk

Values

length
The length of the memory segment

address
The requested address

Context
The process calling brk.

Name
vm.oom_kill — Fires when a thread is selected for termination by the OOM Kkiller.

Synopsis

vm.oom_kill

Values

task
The task being killed

Context
The process that tried to consume excessive memory, and thus triggered the OOM.

24

Chapter 6.

IO Scheduler Tapset

This family of probe points is used to probe 10 scheduler activities. It contains the following probe
points:

Name
ioscheduler.elv_next_request — Fires when a request is retrieved from the request queue

Synopsis

ioscheduler.elv_next_request

Values

elevator_name
The type of I/O elevator currently enabled

Name
ioscheduler.elv_next_request.return — Fires when a request retrieval issues a return signal

Synopsis

ioscheduler.elv_next_request.return

Values
req_flags
Request flags

req
Address of the request

disk _major
Disk major number of the request

disk_minor
Disk minor number of the request

Name
ioscheduler.elv_add_request — A request was added to the request queue

Synopsis

ioscheduler.elv_add_request

25

Chapter 6. 10 Scheduler Tapset

Values
req_flags
Request flags

req
Address of the request

disk_major
Disk major number of the request

elevator_name
The type of I/O elevator currently enabled

disk_minor
Disk minor number of the request

Name
ioscheduler.elv_completed_request — Fires when a request is completed

Synopsis

ioscheduler.elv_completed_request

Values
req_flags
Request flags

req
Address of the request

disk_major
Disk major number of the request

elevator_name
The type of I/O elevator currently enabled

disk_minor
Disk minor number of the request

26

Chapter 7.

SCSI Tapset

This family of probe points is used to probe SCSI activities. It contains the following probe points:

Name
scsi.ioentry — Prepares a SCSI mid-layer request

Synopsis

scsi.ioentry

Values
disk _major
The major number of the disk (-1 if no information)

device_state
The current state of the device.

disk_minor
The minor number of the disk (-1 if no information)

Name
scsi.iodispatching — SCSI mid-layer dispatched low-level SCSI command

Synopsis

scsi.iodispatching

Values

lun
The lun number

req_bufflen
The request buffer length

host_no
The host number

device_state
The current state of the device.

dev_id
The scsi device id

channel
The channel number

Chapter 7. SCSI Tapset

data_direction
The data_direction specifies whether this command is from/to the device. 0
(DMA_BIDIRECTIONAL), 1 (DMA_TO_DEVICE), 2 (DMA_FROM_DEVICE), 3 (DMA_NONE)

request_buffer
The request buffer address

Name
scsi.iodone — SCSI command completed by low level driver and enqueued into the done queue.

Synopsis

scsi.iodone

Values

dun
The lun number

host_no
The host number

device_state
The current state of the device

dev_id
The scsi device id

channel
The channel number

data_direction
The data_direction specifies whether this command is from/to the device.

Name
scsi.iocompleted — SCSI mid-layer running the completion processing for block device I/O requests

Synopsis

scsi.iocompleted

Values
dun
The lun number

host_no
The host number

28

device_state
The current state of the device

dev_id
The scsi device id

channel
The channel number

data_direction
The data_direction specifies whether this command is from/to the device

goodbytes
The bytes completed.

29

30

Chapter 8.

Networking Tapset

This family of probe points is used to probe the activities of the network device and protocol layers.

Name
netdev.receive — Data recieved from network device.

Synopsis

netdev.receive

Values

protocol
Protocol of recieved packet.

dev_name
The name of the device. e.g: eth0, ath1l.

length
The length of the receiving buffer.

Name
netdev.transmit — Network device transmitting buffer

Synopsis

netdev.transmit

Values

protocol
The protocol of this packet.

dev_name
The name of the device. e.g: eth0, ath1l.

length
The length of the transmit buffer.

truesize
The size of the the data to be transmitted.

Name
tcp.sendmsg — Sending a tcp message

Chapter 8. Networking Tapset

Synopsis

tcp.sendmsg

Values
name
Name of this probe

size
Number of bytes to send

sock
Network socket

Context
The process which sends a tcp message

Name
tcp.sendmsg.return — Sending TCP message is done

Synopsis

tcp.sendmsg.return

Values
name
Name of this probe

size
Number of bytes sent or error code if an error occurred.

Context
The process which sends a tcp message

Name
tcp.recvmsg — Receiving TCP message

Synopsis

tcp.recvmsg

32

Values

saddr
A string representing the source IP address

daddr
A string representing the destination IP address

name
Name of this probe

sport
TCP source port

dport
TCP destination port

size
Number of bytes to be received

sock
Network socket

Context
The process which receives a tcp message

Name
tcp.recvmsg.return — Receiving TCP message complete

Synopsis

tcp.recvmsg.return

Values

saddr
A string representing the source IP address

daddr
A string representing the destination IP address

name
Name of this probe

sport
TCP source port

dport
TCP destination port

size

Number of bytes received or error code if an error occurred.

33

Chapter 8. Networking Tapset

Context
The process which receives a tcp message

Name
tcp.disconnect — TCP socket disconnection

Synopsis

tcp.disconnect

Values
saddr
A string representing the source IP address

daddr
A string representing the destination IP address

flags
TCP flags (e.g. FIN, etc)

name
Name of this probe

sport
TCP source port

dport
TCP destination port

sock
Network socket

Context
The process which disconnects tcp

Name
tcp.disconnect.return — TCP socket disconnection complete

Synopsis

tcp.disconnect.return

Values

ret
Error code (0: no error)

34

name
Name of this probe

Context
The process which disconnects tcp

Name
tcp.setsockopt — Call to setsockopt

Synopsis

tcp.setsockopt

Values

optstr
Resolves optname to a human-readable format

level
The level at which the socket options will be manipulated

optlen
Used to access values for setsockopt

name
Name of this probe

optname
TCP socket options (e.g. TCP_NODELAY, TCP_MAXSEG, etc)

sock
Network socket

Context
The process which calls setsockopt

Name
tcp.setsockopt.return — Return from setsockopt

Synopsis

tcp.setsockopt.return

Values

ret
Error code (0: no error)

35

Chapter 8. Networking Tapset

name
Name of this probe

Context
The process which calls setsockopt

Name
tcp.receive — Called when a TCP packet is received

Synopsis

tcp.receive

Values
urg
TCP URG flag

psh
TCP PSH flag

rst
TCP RST flag

dport
TCP destination port

saddr
A string representing the source IP address

daddr
A string representing the destination IP address

ack
TCP ACK flag

syn
TCP SYN flag

fin
TCP FIN flag

sport
TCP source port

Name
udp.sendmsg — Fires whenever a process sends a UDP message

36

Synopsis

udp.sendmsg

Values
name
The name of this probe

size
Number of bytes sent by the process

sock
Network socket used by the process

Context
The process which sent a UDP message

Name
udp.sendmsg.return — Fires whenever an attempt to send a UDP message is completed

Synopsis

udp.sendmsg.return

Values
name
The name of this probe

size
Number of bytes sent by the process

Context
The process which sent a UDP message

Name
udp.recvmsg — Fires whenever a UDP message is received

Synopsis

udp.recvmsg

Chapter 8. Networking Tapset

Values
name
The name of this probe

size
Number of bytes received by the process

sock
Network socket used by the process

Context
The process which received a UDP message

Name
udp.recvmsg.return — Fires whenever an attempt to receive a UDP message received is completed

Synopsis

udp.recvmsg.return

Values

name
The name of this probe

size
Number of bytes received by the process

Context
The process which received a UDP message

Name
udp.disconnect — Fires when a process requests for a UDP disconnection

Synopsis

udp.disconnect

Values
flags
Flags (e.g. FIN, etc)

name
The name of this probe

38

sock
Network socket used by the process

Context
The process which requests a UDP disconnection

Name
udp.disconnect.return — UDP has been disconnected successfully

Synopsis

udp.disconnect.return

Values

ret
Error code (0: no error)

name
The name of this probe

Context
The process which requested a UDP disconnection

Name
ip_ntop — returns a string representation from an integer IP humber

Synopsis

function ip_ntop:string(addr:long)

Arguments
addr
the ip represented as an integer

39

40

Chapter 9.

Socket Tapset

This family of probe points is used to probe socket activities. It contains the following probe points:

Name
socket.send — Message sent on a socket.

Synopsis

socket.send

Values

success
Was send successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message sent (in bytes) or error code if success =0

type
Socket type value

family
Protocol family value

Context
The message sender

Name
socket.receive — Message received on a socket.

Synopsis

socket.receive

Chapter 9. Socket Tapset

Values

success
Was send successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

State
Socket state value

size
Size of message received (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

Context
The message receiver

Name
socket.sendmsg — Message is currently being sent on a socket.

Synopsis

socket.sendmsg

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Message size in bytes

42

type
Socket type value

family
Protocol family value

Context
The message sender

Description
Fires at the beginning of sending a message on a socket via the the sock_sendmsg function

Name
socket.sendmsg.return — Return from socket . sendmsg.

Synopsis

socket.sendmsg.return

Values

success
Was send successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message sent (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

Context
The message sender.

Chapter 9. Socket Tapset

Description
Fires at the conclusion of sending a message on a socket via the sock_sendmsg function

Name
socket.recvmsg — Message being received on socket

Synopsis

socket.recvmsg

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

State
Socket state value

size
Message size in bytes

type
Socket type value

family
Protocol family value

Context
The message receiver.

Description
Fires at the beginning of receiving a message on a socket via the sock_recvmsg function

Name
socket.recvmsg.return — Return from Message being received on socket

Synopsis

socket. recvmsg.return

44

Values

success
Was receive successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message received (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

Context
The message receiver.

Description

Fires at the conclusion of receiving a message on a socket via the sock_recvmsg function.

Name
socket.aio_write — Message send via sock_aio_write

Synopsis

socket.aio_write

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

45

Chapter 9. Socket Tapset

state
Socket state value

size
Message size in bytes

type
Socket type value

family
Protocol family value

Context
The message sender

Description
Fires at the beginning of sending a message on a socket via the sock_aio_write function

Name
socket.aio_write.return — Conclusion of message send via sock_aio_write

Synopsis

socket.aio_write.return

Values
success
Was receive successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

Sstate
Socket state value
size
Size of message received (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

46

Context
The message receiver.

Description
Fires at the conclusion of sending a message on a socket via the sock_aio_write function

Name
socket.aio_read — Receiving message via sock_aio_read

Synopsis

socket.aio_read

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

State
Socket state value

size
Message size in bytes

type
Socket type value

family
Protocol family value

Context
The message sender

Description
Fires at the beginning of receiving a message on a socket via the sock_aio_read function

Name
socket.aio_read.return — Conclusion of message received via sock_aio_read

Chapter 9. Socket Tapset

Synopsis

socket.aio_read.return

Values

success
Was receive successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message received (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

Context
The message receiver.

Description
Fires at the conclusion of receiving a message on a socket via the sock_aio_read function

Name
socket.writev — Message sent via socket_writev

Synopsis

socket.writev

Values

protocol
Protocol value

48

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Message size in bytes

type
Socket type value

family
Protocol family value

Context
The message sender

Description
Fires at the beginning of sending a message on a socket via the sock_writev function

Name
socket.writev.return — Conclusion of message sent via socket_writev

Synopsis

socket.writev.return

Values

success
Was send successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message sent (in bytes) or error code if success = 0

Chapter 9. Socket Tapset

type
Socket type value

family
Protocol family value

Context
The message receiver.

Description
Fires at the conclusion of sending a message on a socket via the sock_writev function

Name
socket.readv — Receiving a message via sock_readv

Synopsis

socket.readv

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

State
Socket state value

size
Message size in bytes

type
Socket type value

family
Protocol family value

Context
The message sender

Description
Fires at the beginning of receiving a message on a socket via the sock_readv function

50

Name
socket.readv.return — Conclusion of receiving a message via sock_readv

Synopsis

socket.readv.return

Values

success
Was receive successful? (1 = yes, 0 = no)

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

size
Size of message received (in bytes) or error code if success = 0

type
Socket type value

family
Protocol family value

Context
The message receiver.

Description
Fires at the conclusion of receiving a message on a socket via the sock_readv function

Name
socket.create — Creation of a socket

Synopsis

socket.create

51

Chapter 9. Socket Tapset

Values

protocol
Protocol value

name
Name of this probe

requester
Requested by user process or the kernel (1 = kernel, 0 = user)

type
Socket type value

family
Protocol family value

Context
The requester (see requester variable)

Description
Fires at the beginning of creating a socket.

Name
socket.create.return — Return from Creation of a socket

Synopsis

socket.create.return

Values

success
Was socket creation successful? (1 = yes, 0 = no)

protocol
Protocol value

err
Error code if success ==

name
Name of this probe

requester
Requested by user process or the kernel (1 = kernel, 0 = user)

type
Socket type value

52

family
Protocol family value

Context
The requester (user process or kernel)

Description
Fires at the conclusion of creating a socket.

Name
socket.close — Close a socket

Synopsis

socket.close

Values

protocol
Protocol value

flags
Socket flags value

name
Name of this probe

state
Socket state value

type
Socket type value

family
Protocol family value

Context
The requester (user process or kernel)

Description
Fires at the beginning of closing a socket.

Name
socket.close.return — Return from closing a socket

Chapter 9. Socket Tapset

Synopsis

socket.close.return

Values
name
Name of this probe

Context
The requester (user process or kernel)

Description
Fires at the conclusion of closing a socket.

Name
sock_prot_num2str — Given a protocol number, return a string representation.

Synopsis

function sock_prot_num2str:string(proto:long)

Arguments

proto
The protocol number.

Name
sock_prot_str2num — Given a protocol name (string), return the corresponding protocol nhumber.

Synopsis

function sock_prot_str2num:long(proto:string)

Arguments

proto
The protocol name.

Name
sock_fam_num2str — Given a protocol family number, return a string representation.

54

Synopsis

function sock_fam_num2str:string(family:1long)

Arguments
family
The family number.

Name
sock_fam_str2num — Given a protocol family name (string), return the corresponding

Synopsis

function sock_fam_str2num:long(family:string)

Arguments
family
The family name.

Description
protocol family number.

Name
sock_state _num2str — Given a socket state number, return a string representation.

Synopsis

function sock_state_num2str:string(state:long)

Arguments
state
The state number.

Name

sock_state str2num — Given a socket state string, return the corresponding state number.

Synopsis

function sock_state_str2num:long(state:string)

55

Chapter 9. Socket Tapset

Arguments

state
The state name.

56

Chapter 10.

Kernel Process Tapset

This family of probe points is used to probe process-related activities. It contains the following probe
points:

Name
kprocess.create — Fires whenever a new process is successfully created

Synopsis

kprocess.create

Values
new_pid
The PID of the newly created process

Context
Parent of the created process.

Description

Fires whenever a new process is successfully created, either as a result of fork (or one of its syscall
variants), or a new kernel thread.

Name
kprocess.start — Starting new process

Synopsis

kprocess.start

Values
None

Context
Newly created process.

Description
Fires immediately before a new process begins execution.

Name
kprocess.exec — Attempt to exec to a new program

57

Chapter 10. Kernel Process Tapset

Synopsis

kprocess.exec

Values
filename
The path to the new executable

Context
The caller of exec.

Description
Fires whenever a process attempts to exec to a new program.

Name
kprocess.exec_complete — Return from exec to a new program

Synopsis

kprocess.exec_complete

Values

success
A boolean indicating whether the exec was successful

errno
The error number resulting from the exec

Context
On success, the context of the new executable. On failure, remains in the context of the caller.

Description
Fires at the completion of an exec call.

Name
kprocess.exit — Exit from process

Synopsis

kprocess.exit

58

Values

code
The exit code of the process

Context
The process which is terminating.

Description

Fires when a process terminates. This will always be followed by a kprocess.release, though the latter

may be delayed if the process waits in a zombie state.

Name
kprocess.release — Process released

Synopsis

kprocess.release

Values
pid
PID of the process being released

task
A task handle to the process being released

Context

The context of the parent, if it wanted notification of this process' termination, else the context of the
process itself.

Description

Fires when a process is released from the kernel. This always follows a kprocess.exit, though it may
be delayed somewhat if the process waits in a zombie state.

59

60

Chapter 11.

Signhal Tapset

This family of probe points is used to probe signal activities. It contains the following probe points:

Name
signal.send — Signal being sent to a process

Synopsis

signal.send

Values

send2queue
Indicates whether the signal is sent to an existing sigqueue

name
The name of the function used to send out the signal

task
A task handle to the signal recipient

sinfo
The address of siginfo struct

si_code
Indicates the signal type

sig_name
A string representation of the signal

sig
The number of the signal

shared
Indicates whether the signal is shared by the thread group

sig _pid
The PID of the process receiving the signal

pid_name
The name of the signal recipient

Context
The signal's sender.

Name
signal.send.return — Signal being sent to a process completed

61

Chapter 11. Signal Tapset

Synopsis

signal.send.return

Values

retstr
The return value to either __group_send_sig_info, specific_send_sig_info, or
send_sigqueue

send2queue
Indicates whether the sent signal was sent to an existing sigqueue

name
The name of the function used to send out the signal

shared
Indicates whether the sent signal is shared by the thread group.

Context
The signal's sender.

Description
Possible __group_send_sig_info and specific_send_sig_info return values are as follows;

0 -- The signal is sucessfully sent to a process, which means that <1> the signal was ignored by the
receiving process, <2> this is a non-RT signal and the system already has one queued, and <3> the
signal was successfully added to the sigqueue of the receiving process.

-EAGAIN -- The sigqueue of the receiving process is overflowing, the signal was RT, and the signal
was sent by a user using something other than kill.

Possible send_group_sigqueue and send_sigqueue return values are as follows;

0 -- The signal was either sucessfully added into the sigqueue of the receiving process, or a
SI_TIMER entry is already queued (in which case, the overrun count will be simply incremented).

1 -- The signal was ignored by the receiving process.

-1 -- (send_sigqueue only) The task was marked exiting, allowing * posix_timer_event to
redirect it to the group leader.

Name
signal.checkperm — Check being performed on a sent signal

Synopsis

signal.checkperm

62

Values
name
Name of the probe point; default value is signal.checkperm

task
A task handle to the signal recipient

sinfo
The address of the siginfo structure

si_code
Indicates the signal type

sig_name
A string representation of the signal

sig
The number of the signal

pid_name
Name of the process receiving the signal

sig_pid
The PID of the process receiving the signal

Name
signal.checkperm.return — Check performed on a sent signal completed

Synopsis

signal.checkperm.return

Values

retstr
Return value as a string

name
Name of the probe point; default value is signal.checkperm

Name
signal.wakeup — Sleeping process being wakened for signal

Synopsis

signal.wakeup

Chapter 11. Signal Tapset

Values

resume
Indicates whether to wake up a task in a STOPPED or TRACED state

State_mask
A string representation indicating the mask of task states to wake. Possible values are
TASK_INTERRUPTIBLE, TASK_STOPPED, TASK_TRACED, and TASK_INTERRUPTIBLE

pid_name
Name of the process to wake

sig _pid

The PID of the process to wake

Name
signal.check_ignored — Checking to see signal is ignored

Synopsis

signal.check_ignored

Values

sig_name
A string representation of the signal

sig
The number of the signal

pid_name
Name of the process receiving the signal

sig_pid

The PID of the process receiving the signal

Name
signal.check_ignored.return — Check to see signal is ignored completed

Synopsis

signal.check_ignored.return

Values
retstr
Return value as a string

name
Name of the probe point; default value is signal.checkperm

64

Name
signal.force_segv — Forcing send of SIGSEGV

Synopsis

signal.force_segv

Values
sig_name
A string representation of the signal

sig
The number of the signal

pid_name
Name of the process receiving the signal

sig _pid
The PID of the process receiving the signal

Name
signal.force_segv.return — Forcing send of SIGSEGV complete

Synopsis

signal.force_segv.return

Values

retstr
Return value as a string

name
Name of the probe point; default value is force_sigsegv

Name
signal.syskill — Sending Kill signal to a process

Synopsis

signal.syskill

65

Chapter 11. Signal Tapset

Values
sig
The specific signal sent to the process

pid

The PID of the process receiving the signal

Name
signal.syskill.return — Sending kill signal completed

Synopsis

signal.syskill.return

Values
None

Name
signal.sys_tkill — Sending a kill signal to a thread

Synopsis

signal.sys_tkill

Values
sig_name
The specific signal sent to the process
sig
The specific signal sent to the process
pid
The PID of the process receiving the kill signal

Description

The tkill call is analogous to kill(2), except that it also allows a process within a specific thread
group to be targetted. Such processes are targetted through their unique thread IDs (TID).

Name
signal.systkill.return — Sending kill signal to a thread completed

Synopsis

66

signal.systkill.return

Values
None

Name
signal.sys_tgkill — Sending Kkill signal to a thread group

Synopsis

signal.sys_tgkill

Values
sig_name
A string representation of the signal

sig
The specific kill signal sent to the process

pid
The PID of the thread receiving the kill signal

tgid
The thread group ID of the thread receiving the kill signal

Description

The tgkill call is similar to tkill, except that it also allows the caller to specify the thread group 1D
of the thread to be signalled. This protects against TID reuse.

Name
signal.sys_tgkill.return — Sending kill signal to a thread group completed

Synopsis

signal.sys_tgkill.return

Values
None

Name
signal.send_sig_queue — Queuing a signal to a process

67

Chapter 11. Signal Tapset

Synopsis

signal.send_sig_queue

Values

sigqueue_addr
The address of the signal queue

sig_name
A string representation of the signal

sig
The queued signal

pid_name
Name of the process to which the signal is queued

sig _pid

The PID of the process to which the signal is queued

Name
signal.send_sig_queue.return — Queuing a signal to a process completed

Synopsis

signal.send_sig_queue.return

Values

retstr
Return value as a string

Name
signal.pending — Examining pending signal

Synopsis

signal.pending

Values
sigset_size
The size of the user-space signal set

sigset_add
The address of the user-space signal set (sigset_t)

68

Description

This probe is used to examine a set of signals pending for delivery to a specific thread. This normally

occurs when the do_sigpending kernel function is executed.

Name
signal.pending.return — Examination of pending signal completed

Synopsis

signal.pending.return

Values

retstr
Return value as a string

Name
signal.handle — Signal handler being invoked

Synopsis

signal.handle

Values
regs
The address of the kernel-mode stack area

sig _code
The si_code value of the siginfo signal

sig_mode
Indicates whether the signal was a user-mode or kernel-mode signal

sinfo
The address of the siginfo table

oldset_addr
The address of the bitmask array of blocked signals

sig
The signal number that invoked the signal handler

ka_addr
The address of the k_sigaction table associated with the signal

Name
signal.handle.return — Signal handler invocation completed

69

Chapter 11. Signal Tapset

Synopsis

signal.handle.return

Values
retstr
Return value as a string

Name
signal.do_action — Examining or changing a signal action

Synopsis

signal.do_action

Values

sa_mask
The new mask of the signal

oldsigact_addr
The address of the old sigaction struct associated with the signal

sig
The signal to be examined/changed

sa_handler
The new handler of the signal

sigact_addr
The address of the new sigaction struct associated with the signal

Name
signal.do_action.return — Examining or changing a signal action completed

Synopsis

signal.do_action.return

Values

retstr
Return value as a string

70

Name
signal.procmask — Examining or changing blocked signals

Synopsis

signal.procmask

Values

how
Indicates how to change the blocked signals; possible values are SIG_BLOCK=0 (for blocking
signals), SIG_UNBLOCK=1 (for unblocking signals), and SIG_SETMASK=2 for setting the signal
mask.

oldsigset_addr
The old address of the signal set (sigset_t)

sigset
The actual value to be set for sigset_t

sigset_addr
The address of the signal set (sigset_t) to be implemented

Name
signal.flush — Flusing all pending signals for a task

Synopsis

signal.flush

Values

task
The task handler of the process performing the flush

pid_name

The name of the process associated with the task performing the flush
sig_pid

The PID of the process associated with the task performing the flush

72

Appendix A. Revision History

Revision 1.0 Wed Jun 17 2009 Don Domingo ddomingo@redhat . com
building book in RHEL

73

mailto:ddomingo@redhat.com

74

	SystemTap Tapset Reference
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Documentation Goals

	Chapter 2. Tapset Development Guidelines
	2.1. Writing Good Tapsets
	2.2. Elements of a Tapset
	2.2.1. Tapset Files
	2.2.2. Namespace
	2.2.3. Comments and Documentation

	Chapter 3. Context Functions
	print_regs
	execname
	pid
	tid
	ppid
	pgrp
	sid
	pexecname
	gid
	egid
	uid
	euid
	cpu
	pp
	registers_valid
	user_mode
	is_return
	target
	stack_size
	stack_used
	stack_unused
	uaddr
	print_stack
	probefunc
	probemod
	modname
	symname
	symdata
	usymname
	usymdata
	print_ustack
	print_backtrace
	backtrace
	caller
	caller_addr
	print_ubacktrace
	ubacktrace

	Chapter 4. Timestamp Functions
	get_cycles

	Chapter 5. Memory Tapset
	vm_fault_contains
	vm.pagefault
	vm.pagefault.return
	addr_to_node
	vm.write_shared
	vm.write_shared_copy
	vm.mmap
	vm.munmap
	vm.brk
	vm.oom_kill

	Chapter 6. IO Scheduler Tapset
	ioscheduler.elv_next_request
	ioscheduler.elv_next_request.return
	ioscheduler.elv_add_request
	ioscheduler.elv_completed_request

	Chapter 7. SCSI Tapset
	scsi.ioentry
	scsi.iodispatching
	scsi.iodone
	scsi.iocompleted

	Chapter 8. Networking Tapset
	netdev.receive
	netdev.transmit
	tcp.sendmsg
	tcp.sendmsg.return
	tcp.recvmsg
	tcp.recvmsg.return
	tcp.disconnect
	tcp.disconnect.return
	tcp.setsockopt
	tcp.setsockopt.return
	tcp.receive
	udp.sendmsg
	udp.sendmsg.return
	udp.recvmsg
	udp.recvmsg.return
	udp.disconnect
	udp.disconnect.return
	ip_ntop

	Chapter 9. Socket Tapset
	socket.send
	socket.receive
	socket.sendmsg
	socket.sendmsg.return
	socket.recvmsg
	socket.recvmsg.return
	socket.aio_write
	socket.aio_write.return
	socket.aio_read
	socket.aio_read.return
	socket.writev
	socket.writev.return
	socket.readv
	socket.readv.return
	socket.create
	socket.create.return
	socket.close
	socket.close.return
	sock_prot_num2str
	sock_prot_str2num
	sock_fam_num2str
	sock_fam_str2num
	sock_state_num2str
	sock_state_str2num

	Chapter 10. Kernel Process Tapset
	kprocess.create
	kprocess.start
	kprocess.exec
	kprocess.exec_complete
	kprocess.exit
	kprocess.release

	Chapter 11. Signal Tapset
	signal.send
	signal.send.return
	signal.checkperm
	signal.checkperm.return
	signal.wakeup
	signal.check_ignored
	signal.check_ignored.return
	signal.force_segv
	signal.force_segv.return
	signal.syskill
	signal.syskill.return
	signal.sys_tkill
	signal.systkill.return
	signal.sys_tgkill
	signal.sys_tgkill.return
	signal.send_sig_queue
	signal.send_sig_queue.return
	signal.pending
	signal.pending.return
	signal.handle
	signal.handle.return
	signal.do_action
	signal.do_action.return
	signal.procmask
	signal.flush

	Appendix A. Revision History

