
Red Hat Enterprise Linux 5

Global File System
Red Hat Global File System

Global File System

Red Hat Enterprise Linux 5 Global File System
Red Hat Global File System
Edition 4

Copyright © 2012 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

This book provides information about configuring, and maintaining Red Hat GFS (Red Hat Global File
System) for Red Hat Enterprise Linux 5.

http://creativecommons.org/licenses/by-sa/3.0/

iii

Introduction v
1. Audience .. v
2. Related Documentation ... v
3. Document Conventions ... vi

3.1. Typographic Conventions ... vi
3.2. Pull-quote Conventions .. vii
3.3. Notes and Warnings ... viii

4. Feedback ... viii

1. GFS Overview 1
1.1. New and Changed Features ... 2
1.2. Performance, Scalability, and Economy ... 2

1.2.1. Superior Performance and Scalability ... 3
1.2.2. Economy and Performance .. 3

1.3. GFS Software Components .. 4
1.4. Before Setting Up GFS .. 5

2. Getting Started 7
2.1. Prerequisite Tasks .. 7
2.2. Initial Setup Tasks .. 7

3. Managing GFS 11
3.1. Creating a File System ... 11
3.2. Mounting a File System .. 15
3.3. Unmounting a File System .. 17
3.4. Special Considerations when Mounting GFS File Systems .. 18
3.5. Displaying GFS Tunable Parameters ... 18
3.6. GFS Quota Management .. 20

3.6.1. Setting Quotas .. 20
3.6.2. Displaying Quota Limits and Usage .. 21
3.6.3. Synchronizing Quotas .. 23
3.6.4. Disabling/Enabling Quota Enforcement ... 24
3.6.5. Disabling/Enabling Quota Accounting .. 25

3.7. Growing a File System ... 26
3.8. Adding Journals to a File System .. 27
3.9. Direct I/O ... 30

3.9.1. O_DIRECT ... 31
3.9.2. GFS File Attribute .. 31
3.9.3. GFS Directory Attribute .. 31

3.10. Data Journaling .. 32
3.11. Configuring atime Updates .. 33

3.11.1. Mount with noatime .. 34
3.11.2. Tune GFS atime Quantum .. 34

3.12. Suspending Activity on a File System .. 35
3.13. Displaying Extended GFS Information and Statistics ... 36

3.13.1. Displaying GFS Space Usage .. 36
3.13.2. Displaying GFS Counters ... 37
3.13.3. Displaying Extended Status .. 39

3.14. Repairing a File System .. 41
3.15. Context-Dependent Path Names ... 43
3.16. The GFS Withdraw Function ... 45

A. Revision History 47

Index 49

iv

v

Introduction
The Global File System Configuration and Administration document provides information about
configuring and maintaining Red Hat GFS (Red Hat Global File System). A GFS file system can be
implemented in a standalone system or as part of a cluster configuration. For information about Red
Hat Cluster Suite refer to Red Hat Cluster Suite Overview and Configuring and Managing a Red Hat
Cluster.

HTML and PDF versions of all the official Red Hat Enterprise Linux manuals and release notes are
available online at http://docs.redhat.com/docs/en-US/index.html.

1. Audience

This book is intended primarily for Linux system administrators who are familiar with the following
activities:

• Linux system administration procedures, including kernel configuration

• Installation and configuration of shared storage networks, such as Fibre Channel SANs

2. Related Documentation
For more information about using Red Hat Enterprise Linux, refer to the following resources:

• Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of Red
Hat Enterprise Linux 5.

• Red Hat Enterprise Linux Deployment Guide — Provides information regarding the deployment,
configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the following
resources:

• Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster Suite.

• Configuring and Managing a Red Hat Cluster — Provides information about installing, configuring
and managing Red Hat Cluster components.

• Logical Volume Manager Administration — Provides a description of the Logical Volume Manager
(LVM), including information on running LVM in a clustered environment.

• Global File System 2: Configuration and Administration — Provides information about installing,
configuring, and maintaining Red Hat GFS2 (Red Hat Global File System 2).

• Using Device-Mapper Multipath — Provides information about using the Device-Mapper Multipath
feature of Red Hat Enterprise Linux 5.

• Using GNBD with Global File System — Provides an overview on using Global Network Block
Device (GNBD) with Red Hat GFS.

• Linux Virtual Server Administration — Provides information on configuring high-performance
systems and services with the Linux Virtual Server (LVS).

• Red Hat Cluster Suite Release Notes — Provides information about the current release of Red Hat
Cluster Suite.

http://docs.redhat.com/docs/en-US/index.html

Introduction

vi

Red Hat Cluster Suite documentation and other Red Hat documents are available in HTML,
PDF, and RPM versions on the Red Hat Enterprise Linux Documentation CD and online at http://
www.redhat.com/docs/.

3. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

3.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

http://www.redhat.com/docs/
http://www.redhat.com/docs/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Pull-quote Conventions

vii

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

3.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Introduction

viii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

3.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

4. Feedback

If you spot a typo, or if you have thought of a way to make this manual better, we would love to
hear from you. Please submit a report in Bugzilla (http://bugzilla.redhat.com/bugzilla/) against the
component Documentation-cluster.

Be sure to mention the manual's identifier:

Bugzilla component: Documentation-cluster
Book identifier: Global_File_System(EN)-5 (2012-2-20T15:10)

http://bugzilla.redhat.com/bugzilla/

Feedback

ix

By mentioning this manual's identifier, we know exactly which version of the guide you have.

If you have a suggestion for improving the documentation, try to be as specific as possible. If you have
found an error, please include the section number and some of the surrounding text so we can find it
easily.

x

Chapter 1.

1

GFS Overview
The Red Hat GFS file system is a native file system that interfaces directly with the Linux kernel file
system interface (VFS layer). When implemented as a cluster file system, GFS employs distributed
metadata and multiple journals. Red Hat supports the use of GFS file systems only as implemented in
Red Hat Cluster Suite.

Note

Although a GFS file system can be implemented in a standalone system or as part of a
cluster configuration, for the Red Hat Enterprise Linux 5.5 release and later Red Hat does
not support the use of GFS as a single-node file system. Red Hat does support a number of
high-performance single node file systems which are optimized for single node and thus have
generally lower overhead than a cluster filesystem. Red Hat recommends using these file
systems in preference to GFS in cases where only a single node needs to mount the file system.

Red Hat will continue to support single-node GFS file systems for existing customers.

Note

Red Hat does not support using GFS for cluster file system deployments greater than 16 nodes.

GFS is based on a 64-bit architecture, which can theoretically accommodate an 8 EB file system.
However, the current supported maximum size of a GFS file system for 64-bit hardware is 100 TB.
The current supported maximum size of a GFS file system for 32-bit hardware is 16 TB. If your system
requires larger GFS file systems, contact your Red Hat service representative.

When determining the size of your file system, you should consider your recovery needs. Running the
gfs_fsck command on a very large file system can take a long time and consume a large amount
of memory. Additionally, in the event of a disk or disk-subsytem failure, recovery time is limited by the
speed of your backup media. For information on the amount of memory the gfs_fsck command
requires, see Section 3.14, “Repairing a File System”.

When configured in a Red Hat Cluster Suite, Red Hat GFS nodes can be configured and managed
with Red Hat Cluster Suite configuration and management tools. Red Hat GFS then provides data
sharing among GFS nodes in a Red Hat cluster, with a single, consistent view of the file system name
space across the GFS nodes. This allows processes on different nodes to share GFS files in the
same way that processes on the same node can share files on a local file system, with no discernible
difference. For information about Red Hat Cluster Suite refer to Configuring and Managing a Red Hat
Cluster.

While a GFS file system may be used outside of LVM, Red Hat supports only GFS file systems that
are created on a CLVM logical volume. CLVM is a cluster-wide implementation of LVM, enabled by the
CLVM daemon clvmd, which manages LVM logical volumes in a Red Hat Cluster Suite cluster. The
daemon makes it possible to use LVM2 to manage logical volumes across a cluster, allowing all nodes
in the cluster to share the logical volumes. For information on the LVM volume manager, see Logical
Volume Manager Administration

Chapter 1. GFS Overview

2

Note

When you configure a GFS file system as a cluster file system, you must ensure that all nodes
in the cluster have access to the shared file system. Asymmetric cluster configurations in which
some nodes have access to the file system and others do not are not supported.

This chapter provides some basic, abbreviated information as background to help you understand
GFS. It contains the following sections:

• Section 1.1, “New and Changed Features”

• Section 1.2, “Performance, Scalability, and Economy”

• Section 1.3, “GFS Software Components”

• Section 1.4, “Before Setting Up GFS”

1.1. New and Changed Features

This section lists new and changed features included with the initial release of Red Hat Enterprise
Linux 5.

• GULM (Grand Unified Lock Manager) is not supported in Red Hat Enterprise Linux 5. If your GFS
file systems use the GULM lock manager, you must convert the file systems to use the DLM lock
manager. This is a two-part process.

• While running Red Hat Enterprise Linux 4, convert your GFS file systems to use the DLM lock
manager.

• Upgrade your operating system to Red Hat Enterprise Linux 5, converting the lock manager to
DLM when you do.

For information on upgrading to Red Hat Enterprise Linux 5 and converting GFS file systems to use
the DLM lock manager, see Configuring and Managing a Red Hat Cluster.

• Documentation for Red Hat Cluster Suite for Red Hat Enterprise Linux 5 has been expanded and
reorganized. For information on the available documents, see Section 2, “Related Documentation”.

1.2. Performance, Scalability, and Economy

You can deploy GFS in a variety of configurations to suit your needs for performance, scalability, and
economy. For superior performance and scalability, you can deploy GFS in a cluster that is connected
directly to a SAN. For more economical needs, you can deploy GFS in a cluster that is connected to a
LAN with servers that use GNBD (Global Network Block Device).

The following sections provide examples of how GFS can be deployed to suit your needs for
performance, scalability, and economy:

• Section 1.2.1, “Superior Performance and Scalability”

Superior Performance and Scalability

3

• Section 1.2.2, “Economy and Performance”

Note

The deployment examples in this chapter reflect basic configurations; your needs might require a
combination of configurations shown in the examples.

1.2.1. Superior Performance and Scalability
You can obtain the highest shared-file performance when applications access storage directly. The
GFS SAN configuration in Figure 1.1, “GFS with a SAN” provides superior file performance for shared
files and file systems. Linux applications run directly on GFS nodes. Without file protocols or storage
servers to slow data access, performance is similar to individual Linux servers with directly connected
storage; yet, each GFS application node has equal access to all data files. GFS supports up to 125
GFS nodes.

Figure 1.1. GFS with a SAN

1.2.2. Economy and Performance
Multiple Linux client applications on a LAN can share the same SAN-based data as shown in
Figure 1.2, “GFS and GNBD with a SAN”. SAN block storage is presented to network clients as block
storage devices by GNBD servers. From the perspective of a client application, storage is accessed as
if it were directly attached to the server in which the application is running. Stored data is actually on
the SAN. Storage devices and data can be equally shared by network client applications. File locking
and sharing functions are handled by GFS for each network client.

Note

Clients implementing ext2 and ext3 file systems can be configured to access their own dedicated
slice of SAN storage.

Chapter 1. GFS Overview

4

Figure 1.2. GFS and GNBD with a SAN

Figure 1.3, “GFS and GNBD with Directly Connected Storage” shows how Linux client applications
can take advantage of an existing Ethernet topology to gain shared access to all block storage
devices. Client data files and file systems can be shared with GFS on each client. Application failover
can be fully automated with Red Hat Cluster Suite.

Figure 1.3. GFS and GNBD with Directly Connected Storage

1.3. GFS Software Components

Table 1.1, “GFS Software Subsystem Components” summarizes the GFS software components.

Before Setting Up GFS

5

Table 1.1. GFS Software Subsystem Components

Software Component Description

gfs.ko Kernel module that implements the GFS file system and is
loaded on GFS cluster nodes.

lock_dlm.ko A lock module that implements DLM locking for GFS. It plugs
into the lock harness, lock_harness.ko and communicates
with the DLM lock manager in Red Hat Cluster Suite.

lock_nolock.ko A lock module for use when GFS is used as a local file system
only. It plugs into the lock harness, lock_harness.ko and
provides local locking.

1.4. Before Setting Up GFS

Before you install and set up GFS, note the following key characteristics of your GFS file systems:

GFS nodes
Determine which nodes in the Red Hat Cluster Suite will mount the GFS file systems.

Number of file systems
Determine how many GFS file systems to create initially. (More file systems can be added later.)

File system name
Determine a unique name for each file system. Each file system name is required in the form of
a parameter variable. For example, this book uses file system names mydata1 and mydata2 in
some example procedures.

File system size
GFS is based on a 64-bit architecture, which can theoretically accommodate an 8 EB file system.
However, the current supported maximum size of a GFS file system for 64-bit hardware is 100 TB.
The current supported maximum size of a GFS file system for 32-bit hardware is 16 TB. If your
system requires larger GFS file systems, contact your Red Hat service representative.

When determining the size of your file system, you should consider your recovery needs. Running
the gfs_fsck command on a very large file system can take a long time and consume a large
amount of memory. Additionally, in the event of a disk or disk-subsytem failure, recovery time
is limited by the speed of your backup media. For information on the amount of memory the
gfs_fsck command requires, see Section 3.14, “Repairing a File System”.

Journals
Determine the number of journals for your GFS file systems. One journal is required for each node
that mounts a GFS file system. Make sure to account for additional journals needed for future
expansion, as you cannot add journals dynamically to a GFS file system.

GNBD server nodes
If you are using GNBD, determine how many GNBD server nodes are needed. Note the hostname
and IP address of each GNBD server node for setting up GNBD clients later. For information on
using GNBD with GFS, see the Using GNBD with Global File System document.

Storage devices and partitions
Determine the storage devices and partitions to be used for creating logical volumes (via CLVM) in
the file systems.

Chapter 1. GFS Overview

6

Note

You may see performance problems with GFS when many create and delete operations
are issued from more than one node in the same directory at the same time. If this causes
performance problems in your system, you should localize file creation and deletions by a node to
directories specific to that node as much as possible.

Chapter 2.

7

Getting Started
This chapter describes procedures for initial setup of GFS and contains the following sections:

• Section 2.1, “Prerequisite Tasks”

• Section 2.2, “Initial Setup Tasks”

2.1. Prerequisite Tasks

You should complete the following tasks before setting up Red Hat GFS:

• Make sure that you have noted the key characteristics of the GFS nodes (refer to Section 1.4,
“Before Setting Up GFS”).

• Make sure that the clocks on the GFS nodes are synchronized. It is recommended that you use the
Network Time Protocol (NTP) software provided with your Red Hat Enterprise Linux distribution.

Note

The system clocks in GFS nodes must be within a few minutes of each other to prevent
unnecessary inode time-stamp updating. Unnecessary inode time-stamp updating severely
impacts cluster performance.

• In order to use GFS in a clustered environment, you must configure your system to use the
Clustered Logical Volume Manager (CLVM), a set of clustering extensions to the LVM Logical
Volume Manager. In order to use CLVM, the Red Hat Cluster Suite software, including the
clvmd daemon, must be running. For information on using CLVM, see Logical Volume Manager
Administration. For information on installing and administering Red Hat Cluster Suite, see Cluster
Administration.

2.2. Initial Setup Tasks

Initial GFS setup consists of the following tasks:

1. Setting up logical volumes

2. Making a GFS files system

3. Mounting file systems

Follow these steps to set up GFS initially.

1. Using LVM, create a logical volume for each Red Hat GFS file system.

Chapter 2. Getting Started

8

Note

You can use init.d scripts included with Red Hat Cluster Suite to automate activating and
deactivating logical volumes. For more information about init.d scripts, refer to Configuring
and Managing a Red Hat Cluster.

2. Create GFS file systems on logical volumes created in Step 1. Choose a unique name for each file
system. For more information about creating a GFS file system, refer to Section 3.1, “Creating a
File System”.

You can use either of the following formats to create a clustered GFS file system:

gfs_mkfs -p lock_dlm -t ClusterName:FSName -j NumberJournals BlockDevice

mkfs -t gfs -p lock_dlm -t LockTableName -j NumberJournals BlockDevice

You can use either of the following formats to create a local GFS file system:

gfs_mkfs -p lock_nolock -j NumberJournals BlockDevice

mkfs -t gfs -p lock_nolock -j NumberJournals BlockDevice

For more information on creating a GFS file system, see Section 3.1, “Creating a File System”.

3. At each node, mount the GFS file systems. For more information about mounting a GFS file
system, see Section 3.2, “Mounting a File System”.

Command usage:

mount BlockDevice MountPoint

mount -o acl BlockDevice MountPoint

The -o acl mount option allows manipulating file ACLs. If a file system is mounted without the -
o acl mount option, users are allowed to view ACLs (with getfacl), but are not allowed to set
them (with setfacl).

Initial Setup Tasks

9

Note

You can use init.d scripts included with Red Hat Cluster Suite to automate mounting
and unmounting GFS file systems. For more information about init.d scripts, refer to
Configuring and Managing a Red Hat Cluster.

10

Chapter 3.

11

Managing GFS
This chapter describes the tasks and commands for managing GFS and consists of the following
sections:

• Section 3.1, “Creating a File System”

• Section 3.2, “Mounting a File System”

• Section 3.3, “Unmounting a File System”

• Section 3.4, “Special Considerations when Mounting GFS File Systems”

• Section 3.5, “Displaying GFS Tunable Parameters”

• Section 3.6, “GFS Quota Management”

• Section 3.7, “Growing a File System”

• Section 3.8, “Adding Journals to a File System”

• Section 3.9, “Direct I/O”

• Section 3.10, “Data Journaling”

• Section 3.11, “Configuring atime Updates”

• Section 3.12, “Suspending Activity on a File System”

• Section 3.13, “Displaying Extended GFS Information and Statistics”

• Section 3.14, “Repairing a File System”

• Section 3.15, “Context-Dependent Path Names”

• Section 3.16, “The GFS Withdraw Function”

3.1. Creating a File System

You can create a GFS file system with the gfs_mkfs command. A file system is created on an
activated LVM volume. The following information is required to execute the gfs_mkfs command:

• Lock protocol/module name. The lock protocol for a cluster is lock_dlm. The lock protocol when
GFS is acting as a local file system (one node only) is lock_nolock.

• Cluster name (when running as part of a cluster configuration).

• Number of journals (one journal required for each node that may be mounting the file systema.)
Make sure to account for additional journals needed for future expansion, as you cannot add
journals dynamically to a GFS file system.

When creating a GFS file system, you can use the gfs_mkfs directly, or you can use the mkfs
command with the -t parameter specifying a file system of type gfs, followed by the gfs file system
options.

Chapter 3. Managing GFS

12

Note

Once you have created a GFS file system with the gfs_mkfs command, you cannot decrease
the size of the file system. You can, however, increase the size of an existing file system with the
gfs_grow command, as described in Section 3.7, “Growing a File System”.

Usage
When creating a clustered GFS file system, you can use either of the following formats:

gfs_mkfs -p LockProtoName -t LockTableName -j NumberJournals BlockDevice

mkfs -t gfs -p LockProtoName -t LockTableName -j NumberJournals BlockDevice

When creating a local file system, you can use either of the following formats:

Note

For the Red Hat Enterprise Linux 5.5 release and later Red Hat does not support the use of GFS
as a single-node file system. Red Hat will continue to support single-node GFS file systems for
existing customers.

gfs_mkfs -p LockProtoName -j NumberJournals BlockDevice

mkfs -t gfs -p LockProtoName -j NumberJournals BlockDevice

Warning

Make sure that you are very familiar with using the LockProtoName and LockTableName
parameters. Improper use of the LockProtoName and LockTableName parameters may cause
file system or lock space corruption.

LockProtoName
Specifies the name of the locking protocol to use. The lock protocol for a cluster is lock_dlm. The
lock protocol when GFS is acting as a local file system (one node only) is lock_nolock.

LockTableName
This parameter is specified for GFS file system in a cluster configuration. It has two parts
separated by a colon (no spaces) as follows: ClusterName:FSName

Examples

13

• ClusterName, the name of the Red Hat cluster for which the GFS file system is being created.

• FSName, the file system name, can be 1 to 16 characters long, and the name must be unique
among all file systems in the cluster.

NumberJournals
Specifies the number of journals to be created by the gfs_mkfs command. One journal is
required for each node that mounts the file system. (More journals than are needed can be
specified at creation time to allow for future expansion.)

BlockDevice
Specifies a volume.

Examples
In these examples, lock_dlm is the locking protocol that the file system uses, since this is a clustered
file system. The cluster name is alpha, and the file system name is mydata1. The file system
contains eight journals and is created on /dev/vg01/lvol0.

[root@ask-07 ~]# gfs_mkfs -p lock_dlm -t alpha:mydata1 -j 8 /dev/vg01/lvol0
This will destroy any data on /dev/vg01/lvol0.

Are you sure you want to proceed? [y/n] y

Device: /dev/vg01/lvol0
Blocksize: 4096
Filesystem Size: 136380192
Journals: 8
Resource Groups: 2082
Locking Protocol: lock_dlm
Lock Table: alpha:mydata1

Syncing...
All Done

[root@ask-07 ~]# mkfs -t gfs -p lock_dlm -t alpha:mydata1 -j 8 /dev/vg01/lvol0
This will destroy any data on /dev/vg01/lvol0.

Are you sure you want to proceed? [y/n] y

Device: /dev/vg01/lvol0
Blocksize: 4096
Filesystem Size: 136380192
Journals: 8
Resource Groups: 2082
Locking Protocol: lock_dlm
Lock Table: alpha:mydata1

Syncing...
All Done

In these examples, a second lock_dlm file system is made, which can be used in cluster alpha. The
file system name is mydata2. The file system contains eight journals and is created on /dev/vg01/
lvol1.

gfs_mkfs -p lock_dlm -t alpha:mydata2 -j 8 /dev/vg01/lvol1

Chapter 3. Managing GFS

14

mkfs -t gfs -p lock_dlm -t alpha:mydata2 -j 8 /dev/vg01/lvol1

Complete Options
Table 3.1, “Command Options: gfs_mkfs” describes the gfs_mkfs command options.

Table 3.1. Command Options: gfs_mkfs

Flag Parameter Description

-b BlockSize Sets the file system block size to BlockSize. Default
block size is 4096 bytes.

-D Enables debugging output.

-h Help. Displays available options.

-J MegaBytes Specifies the size of the journal in megabytes. Default
journal size is 128 megabytes. The minimum size is 32
megabytes.

-j Number Specifies the number of journals to be created by the
gfs_mkfs command. One journal is required for each
node that mounts the file system.

Note: More journals than are needed can be specified
at creation time to allow for future expansion.

-p LockProtoName Specifies the name of the locking protocol to use.
Recognized locking protocols include:

lock_dlm — The standard locking module, required
for a clustered file system.

lock_nolock — Used when GFS is acting as a local
file system (one node only).

-O Prevents the gfs_mkfs command from asking for
confirmation before writing the file system.

-q Quiet. Do not display anything.

-r MegaBytes Specifies the size of the resource groups in
megabytes. Default resource group size is 256
megabytes.

-s Blocks Specifies the journal-segment size in file system
blocks.

-t LockTableName Used in a clustered file system. This parameter has
two parts separated by a colon (no spaces) as follows:
ClusterName:FSName.

ClusterName is the name of the Red Hat cluster for
which the GFS file system is being created. The cluster
name is set in the /etc/cluster/cluster.conf
file via the Cluster Configuration Tool and displayed
at the Cluster Status Tool in the Red Hat Cluster Suite
cluster management GUI.

Mounting a File System

15

Flag Parameter Description
FSName, the file system name, can be 1 to 16
characters in length, and the name must be unique
among all file systems in the cluster.

-V Displays command version information.

3.2. Mounting a File System

Before you can mount a GFS file system, the file system must exist (refer to Section 3.1, “Creating
a File System”), the volume where the file system exists must be activated, and the supporting
clustering and locking systems must be started (refer to Chapter 2, Getting Started and Configuring
and Managing a Red Hat Cluster. After those requirements have been met, you can mount the GFS
file system as you would any Linux file system.

To manipulate file ACLs, you must mount the file system with the -o acl mount option. If a file
system is mounted without the -o acl mount option, users are allowed to view ACLs (with getfacl),
but are not allowed to set them (with setfacl).

Usage
Mounting Without ACL Manipulation

mount BlockDevice MountPoint

Mounting With ACL Manipulation

mount -o acl BlockDevice MountPoint

-o acl
GFS-specific option to allow manipulating file ACLs.

BlockDevice
Specifies the block device where the GFS file system resides.

MountPoint
Specifies the directory where the GFS file system should be mounted.

Example
In this example, the GFS file system on /dev/vg01/lvol0 is mounted on the /mydata1 directory.

mount /dev/vg01/lvol0 /mydata1

Complete Usage

mount BlockDevice MountPoint -o option

Chapter 3. Managing GFS

16

The -o option argument consists of GFS-specific options (refer to Table 3.2, “GFS-Specific Mount
Options”) or acceptable standard Linux mount -o options, or a combination of both. Multiple option
parameters are separated by a comma and no spaces.

Note

The mount command is a Linux system command. In addition to using GFS-specific options
described in this section, you can use other, standard, mount command options (for example, -
r). For information about other Linux mount command options, see the Linux mount man page.

Table 3.2, “GFS-Specific Mount Options” describes the available GFS-specific -o option values that
can be passed to GFS at mount time.

Note

This table includes descriptions of options that are used with local file systems only For the Red
Hat Enterprise Linux 5.5 release and later Red Hat does not support the use of GFS as a single-
node file system. Red Hat will continue to support single-node GFS file systems for existing
customers.

Table 3.2. GFS-Specific Mount Options

Option Description

acl Allows manipulating file ACLs. If a file system is
mounted without the acl mount option, users are
allowed to view ACLs (with getfacl), but are not
allowed to set them (with setfacl).

ignore_local_fs
Caution: This option should not be used
when GFS file systems are shared.

Forces GFS to treat the file system as a multihost file
system. By default, using lock_nolock automatically
turns on the localcaching and localflocks flags.

localcaching
Caution: This option should not be used
when GFS file systems are shared.

Tells GFS that it is running as a local file system. GFS
can then turn on selected optimization capabilities
that are not available when running in cluster mode.
The localcaching flag is automatically turned on by
lock_nolock.

localflocks
Caution: This option should not be used
when GFS file systems are shared.

Tells GFS to let the VFS (virtual file system) layer do all
flock and fcntl. The localflocks flag is automatically
turned on by lock_nolock.
Note that the localflocks mount option affects only
advisory fcntl()/POSIX locks and flock locks that
are issued by applications. The internal locking that
ensures coherency of data across the cluster by means
of GFS's glock abstraction is separate from and not
affected by the localflocks setting.

Unmounting a File System

17

Option Description
If you are unsure whether an application uses
fcntl()/POSIX locks and thus requires that you
mount your file system with the localflocks, you
can use the strace utility to print out the system calls
that are made during a test run of the application. Look
for fcntl calls that have F_GETLK, F_SETLK, or
F_SETLKW as the cmd argument.
Note that GFS does not currently support either leases
or mandatory locking.

lockproto=LockModuleName Allows the user to specify which locking protocol to
use with the file system. If LockModuleName is not
specified, the locking protocol name is read from the
file system superblock.

locktable=LockTableName For a clustered file system, allows the user to specify
which locking table to use with the file system.

oopses_ok This option allows a GFS node to not panic when
an oops occurs. (By default, a GFS node panics
when an oops occurs, causing the file system
used by that node to stall for other GFS nodes.)
A GFS node not panicking when an oops occurs
minimizes the failure on other GFS nodes using the
file system that the failed node is using. There may
be circumstances where you do not want to use this
option — for example, when you need more detailed
troubleshooting information. Use this option with care.

Note: This option is turned on automatically if
lock_nolock locking is specified; however, you can
override it by using the ignore_local_fs option.

upgrade Upgrade the on-disk format of the file system so that it
can be used by newer versions of GFS.

errors=panic|withdraw When errors=panic is specified, file system errors
will cause a kernel panic. The default behavior, which
is the same as specifying errors=withdraw, is for
the system to withdraw from the file system and make
it inaccessible until the next reboot; in some cases the
system may remain running. For information on the
GFS withdraw function, see Section 3.16, “The GFS
Withdraw Function”.

3.3. Unmounting a File System

The GFS file system can be unmounted the same way as any Linux file system — by using the
umount command.

Chapter 3. Managing GFS

18

Note

The umount command is a Linux system command. Information about this command can be
found in the Linux umount command man pages.

Usage

umount MountPoint

MountPoint
Specifies the directory where the GFS file system should be mounted.

3.4. Special Considerations when Mounting GFS File
Systems

GFS file systems that have been mounted manually rather than automatically through an entry in the
fstab file will not be known to the system when file systems are unmounted at system shutdown. As
a result, the GFS script will not unmount the GFS file system. After the GFS shutdown script is run, the
standard shutdown process kills off all remaining user processes, including the cluster infrastructure,
and tries to unmount the file system. This unmount will fail without the cluster infrastructure and the
system will hang.

To prevent the system from hanging when the GFS file systems are unmounted, you should do one of
the following:

• Always use an entry in the fstab file to mount the GFS file system.

• If a GFS file system has been mounted manually with the mount command, be sure to unmount the
file system manually with the umount command before rebooting or shutting down the system.

If your file system hangs while it is being unmounted during system shutdown under these
circumstances, perform a hardware reboot. It is unlikely that any data will be lost since the file system
is synced earlier in the shutdown process.

3.5. Displaying GFS Tunable Parameters

There are a variety of parameters associated with a GFS file system that you can modify with the
gfs_tool settune command. Some of these parameters are used to administer GFS quotas:
quota_quantum, quota_enforce, quota_account, and atime_quantum. These parameters are
described in Section 3.6, “GFS Quota Management”, along with examples of how to modify them.

Parameters that you set with the gfs_tool settune command must be set on each node each time
the file system is mounted. These parameters are not persistent across mounts.

Usage

19

Note

The majority of the tunable parameters are internal parameters. They are intended for
development purposes only and should not be changed.

The gfs_tool gettune command displays a listing of the current values of the GFS tunable
parameters.

Usage
Display Tunable Parameters

gfs_tool gettune MountPoint

MountPoint
Specifies the directory where the GFS file system is mounted.

Examples
In this example, all GFS tunable parameters for the file system on the mount point /mnt/gfs are
displayed.

[root@tng3-1]# gfs_tool gettune /mnt/gfs
ilimit1 = 100
ilimit1_tries = 3
ilimit1_min = 1
ilimit2 = 500
ilimit2_tries = 10
ilimit2_min = 3
demote_secs = 300
incore_log_blocks = 1024
jindex_refresh_secs = 60
depend_secs = 60
scand_secs = 5
recoverd_secs = 60
logd_secs = 1
quotad_secs = 5
inoded_secs = 15
glock_purge = 0
quota_simul_sync = 64
quota_warn_period = 10
atime_quantum = 3600
quota_quantum = 60
quota_scale = 1.0000 (1, 1)
quota_enforce = 1
quota_account = 1
new_files_jdata = 0
new_files_directio = 0
max_atomic_write = 4194304
max_readahead = 262144
lockdump_size = 131072
stall_secs = 600
complain_secs = 10
reclaim_limit = 5000

Chapter 3. Managing GFS

20

entries_per_readdir = 32
prefetch_secs = 10
statfs_slots = 64
max_mhc = 10000
greedy_default = 100
greedy_quantum = 25
greedy_max = 250
rgrp_try_threshold = 100
statfs_fast = 0

3.6. GFS Quota Management

File-system quotas are used to limit the amount of file system space a user or group can use. A user
or group does not have a quota limit until one is set. GFS keeps track of the space used by each user
and group even when there are no limits in place. GFS updates quota information in a transactional
way so system crashes do not require quota usages to be reconstructed.

To prevent a performance slowdown, a GFS node synchronizes updates to the quota file only
periodically. The "fuzzy" quota accounting can allow users or groups to slightly exceed the set limit.
To minimize this, GFS dynamically reduces the synchronization period as a "hard" quota limit is
approached.

GFS uses its gfs_quota command to manage quotas. Other Linux quota facilities cannot be used
with GFS.

3.6.1. Setting Quotas

Two quota settings are available for each user ID (UID) or group ID (GID): a hard limit and a warn limit.

A hard limit is the amount of space that can be used. The file system will not let the user or group use
more than that amount of disk space. A hard limit value of zero means that no limit is enforced.

A warn limit is usually a value less than the hard limit. The file system will notify the user or group
when the warn limit is reached to warn them of the amount of space they are using. A warn limit value
of zero means that no limit is enforced.

Limits are set using the gfs_quota command. The command only needs to be run on a single node
where GFS is mounted.

Usage
Setting Quotas, Hard Limit

gfs_quota limit -u User -l Size -f MountPoint

gfs_quota limit -g Group -l Size -f MountPoint

Setting Quotas, Warn Limit

gfs_quota warn -u User -l Size -f MountPoint

Displaying Quota Limits and Usage

21

gfs_quota warn -g Group -l Size -f MountPoint

User
A user ID to limit or warn. It can be either a user name from the password file or the UID number.

Group
A group ID to limit or warn. It can be either a group name from the group file or the GID number.

Size
Specifies the new value to limit or warn. By default, the value is in units of megabytes. The
additional -k, -s and -b flags change the units to kilobytes, sectors, and file system blocks,
respectively.

MountPoint
Specifies the GFS file system to which the actions apply.

Examples
This example sets the hard limit for user Bert to 1024 megabytes (1 gigabyte) on file system /gfs.

gfs_quota limit -u Bert -l 1024 -f /gfs

This example sets the warn limit for group ID 21 to 50 kilobytes on file system /gfs.

gfs_quota warn -g 21 -l 50 -k -f /gfs

3.6.2. Displaying Quota Limits and Usage

Quota limits and current usage can be displayed for a specific user or group using the gfs_quota
get command. The entire contents of the quota file can also be displayed using the gfs_quota
list command, in which case all IDs with a non-zero hard limit, warn limit, or value are listed.

Usage
Displaying Quota Limits for a User

gfs_quota get -u User -f MountPoint

Displaying Quota Limits for a Group

gfs_quota get -g Group -f MountPoint

Displaying Entire Quota File

gfs_quota list -f MountPoint

Chapter 3. Managing GFS

22

User
A user ID to display information about a specific user. It can be either a user name from the
password file or the UID number.

Group
A group ID to display information about a specific group. It can be either a group name from the
group file or the GID number.

MountPoint
Specifies the GFS file system to which the actions apply.

Command Output
GFS quota information from the gfs_quota command is displayed as follows:

user User: limit:LimitSize warn:WarnSize value:Value

group Group: limit:LimitSize warn:WarnSize value:Value

The LimitSize, WarnSize, and Value numbers (values) are in units of megabytes by default.
Adding the -k, -s, or -b flags to the command line change the units to kilobytes, sectors, or file
system blocks, respectively.

User
A user name or ID to which the data is associated.

Group
A group name or ID to which the data is associated.

LimitSize
The hard limit set for the user or group. This value is zero if no limit has been set.

Value
The actual amount of disk space used by the user or group.

Comments
When displaying quota information, the gfs_quota command does not resolve UIDs and GIDs into
names if the -n option is added to the command line.

Space allocated to GFS's hidden files can be left out of displayed values for the root UID and GID
by adding the -d option to the command line. This is useful when trying to match the numbers from
gfs_quota with the results of a du command.

Examples
This example displays quota information for all users and groups that have a limit set or are using any
disk space on file system /gfs.

[root@ask-07 ~]# gfs_quota list -f /gfs
user root: limit: 0.0 warn: 0.0 value: 0.2
user moe: limit: 1024.0 warn: 0.0 value: 0.0
group root: limit: 0.0 warn: 0.0 value: 0.2

Synchronizing Quotas

23

group stooges: limit: 0.0 warn: 0.0 value: 0.0

This example displays quota information in sectors for group users on file system /gfs.

[root@ask-07 ~]# gfs_quota get -g users -f /gfs -s
group users: limit: 0 warn: 96 value: 0

3.6.3. Synchronizing Quotas

GFS stores all quota information in its own internal file on disk. A GFS node does not update this
quota file for every file system write; rather, it updates the quota file once every 60 seconds. This is
necessary to avoid contention among nodes writing to the quota file, which would cause a slowdown in
performance.

As a user or group approaches their quota limit, GFS dynamically reduces the time between its
quota-file updates to prevent the limit from being exceeded. The normal time period between quota
synchronizations is a tunable parameter, quota_quantum, and can be changed using the gfs_tool
command. By default, the time period is 60 seconds. Also, the quota_quantum parameter must
be set on each node and each time the file system is mounted. (Changes to the quota_quantum
parameter are not persistent across unmounts.)

To see the current values of the GFS tunable parameters, including quota_quantum, you can use the
gfs_tool gettune, as described in Section 3.5, “Displaying GFS Tunable Parameters”.

You can use the gfs_quota sync command to synchronize the quota information from a node to the
on-disk quota file between the automatic updates performed by GFS.

Usage
Synchronizing Quota Information

gfs_quota sync -f MountPoint

MountPoint
Specifies the GFS file system to which the actions apply.

Tuning the Time Between Synchronizations

gfs_tool settune MountPoint quota_quantum Seconds

MountPoint
Specifies the GFS file system to which the actions apply.

Seconds
Specifies the new time period between regular quota-file synchronizations by GFS. Smaller values
may increase contention and slow down performance.

Examples
This example synchronizes the quota information from the node it is run on to file system /gfs.

Chapter 3. Managing GFS

24

gfs_quota sync -f /gfs

This example changes the default time period between regular quota-file updates to one hour (3600
seconds) for file system /gfs on a single node.

gfs_tool settune /gfs quota_quantum 3600

3.6.4. Disabling/Enabling Quota Enforcement

Enforcement of quotas can be disabled for a file system without clearing the limits set for all users
and groups. Enforcement can also be enabled. Disabling and enabling of quota enforcement is
done by changing a tunable parameter, quota_enforce, with the gfs_tool command. The
quota_enforce parameter must be disabled or enabled on each node where quota enforcement
should be disabled/enabled. Each time the file system is mounted, enforcement is enabled by default.
(Disabling is not persistent across unmounts.)

To see the current values of the GFS tunable parameters, including quota_enforce, you can use the
gfs_tool gettune, as described in Section 3.5, “Displaying GFS Tunable Parameters”.

Usage

gfs_tool settune MountPoint quota_enforce {0|1}

MountPoint
Specifies the GFS file system to which the actions apply.

quota_enforce {0|1}
0 = disabled

1 = enabled

Comments
A value of 0 disables enforcement. Enforcement can be enabled by running the command with a value
of 1 (instead of 0) as the final command line parameter. Even when GFS is not enforcing quotas, it still
keeps track of the file system usage for all users and groups so that quota-usage information does not
require rebuilding after re-enabling quotas.

Examples
This example disables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 0

This example enables quota enforcement on file system /gfs.

gfs_tool settune /gfs quota_enforce 1

Disabling/Enabling Quota Accounting

25

3.6.5. Disabling/Enabling Quota Accounting

By default, quota accounting is enabled; therefore, GFS keeps track of disk usage for every user and
group even when no quota limits have been set. Quota accounting incurs unnecessary overhead if
quotas are not used. You can disable quota accounting completely by setting the quota_account
tunable parameter to 0. This must be done on each node and after each mount. (The 0 setting is
not persistent across unmounts.) Quota accounting can be enabled by setting the quota_account
tunable parameter to 1.

To see the current values of the GFS tunable parameters, including quota_account, you can use the
gfs_tool gettune, as described in Section 3.5, “Displaying GFS Tunable Parameters”.

Usage

gfs_tool settune MountPoint quota_account {0|1}

MountPoint
Specifies the GFS file system to which the actions apply.

quota_account {0|1}
0 = disabled

1 = enabled

Comments
To enable quota accounting on a file system, the quota_account parameter must be set back
to 1. Afterward, the GFS quota file must be initialized to account for all current disk usage for
users and groups on the file system. The quota file is initialized by running: gfs_quota init -f
MountPoint.

Note

Initializing the quota file requires scanning the entire file system and may take a long time.

To see the current values of the GFS tunable parameters, including quota_account, you can use the
gfs_tool gettune, as described in Section 3.5, “Displaying GFS Tunable Parameters”.

Examples
This example disables quota accounting on file system /gfs on a single node.

gfs_tool settune /gfs quota_account 0

This example enables quota accounting on file system /gfs on a single node and initializes the quota
file.

Chapter 3. Managing GFS

26

gfs_tool settune /gfs quota_account 1
gfs_quota init -f /gfs

3.7. Growing a File System

The gfs_grow command is used to expand a GFS file system after the device where the file system
resides has been expanded. Running a gfs_grow command on an existing GFS file system fills
all spare space between the current end of the file system and the end of the device with a newly
initialized GFS file system extension. When the fill operation is completed, the resource index for the
file system is updated. All nodes in the cluster can then use the extra storage space that has been
added.

The gfs_grow command must be run on a mounted file system, but only needs to be run on one
node in a cluster. All the other nodes sense that the expansion has occurred and automatically start
using the new space.

To verify that the changes were successful, use the gfs_grow command with the -T (test) and -v
(verbose) flags. Running the command with those flags displays the current state of the mounted GFS
file system.

Note

Once you have created a GFS file system with the gfs_mkfs command, you cannot decrease
the size of the file system.

Usage

gfs_grow MountPoint

MountPoint
Specifies the GFS file system to which the actions apply.

Comments
Before running the gfs_grow command:

• Back up important data on the file system.

• Display the volume that is used by the file system to be expanded by running a df MountPoint
command.

• Expand the underlying cluster volume with LVM. For information on administering LVM volumes, see
Logical Volume Manager Administration.

The gfs_grow command provides a -T (test) option that allows you to see the results of executing
the command without actually expanding the file system. Using this command with the -v provides
additional information.

After running the gfs_grow command, you can run a df MountPoint command on the file system
to check that the new space is now available in the file system.

Examples

27

Examples
In this example, the underlying logical volume for the file system file system on the /mnt/gfs
directory is extended, and then the file system is expanded.

[root@tng3-1 ~]# lvextend -L35G /dev/gfsvg/gfslv
 Extending logical volume gfslv to 35.00 GB
 Logical volume gfslv successfully resized
[root@tng3-1 ~]# gfs_grow /mnt/gfs
FS: Mount Point: /mnt/gfs
FS: Device: /dev/mapper/gfsvg-gfslv
FS: Options: rw,hostdata=jid=0:id=196609:first=1
FS: Size: 5341168
DEV: Size: 9175040
Preparing to write new FS information...
Done.

Complete Usage

gfs_grow [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint
Specifies the directory where the GFS file system is mounted.

Device
Specifies the device node of the file system.

Table 3.3, “GFS-specific Options Available While Expanding A File System” describes the GFS-
specific options that can be used while expanding a GFS file system.

Table 3.3. GFS-specific Options Available While Expanding A File System

Option Description

-h Help. Displays a short usage message.

-q Quiet. Turns down the verbosity level.

-T Test. Do all calculations, but do not write any data to the disk and do
not expand the file system.

-V Displays command version information.

-v Turns up the verbosity of messages.

3.8. Adding Journals to a File System

The gfs_jadd command is used to add journals to a GFS file system after the device where the
file system resides has been expanded. Running a gfs_jadd command on a GFS file system uses
space between the current end of the file system and the end of the device where the file system
resides. When the fill operation is completed, the journal index is updated.

The gfs_jadd command must be run on mounted file system, but it only needs to be run on one
node in the cluster. All the other nodes sense that the expansion has occurred.

Chapter 3. Managing GFS

28

To verify that the changes were successful, use the gfs_jadd command with the -T (test) and -v
(verbose) flags. Running the command with those flags displays the current state of the mounted GFS
file system.

Usage

gfs_jadd -j Number MountPoint

Number
Specifies the number of new journals to be added.

MountPoint
Specifies the directory where the GFS file system is mounted.

Comments
Before running the gfs_jadd command:

• Back up important data on the file system.

• Run a df MountPoint command to display the volume used by the file system where journals will
be added.

• Expand the underlying cluster volume with LVM. For information on administering LVM volumes, see
the LVM Administrator's Guide

You can find out how many journals are currently used by the file system with the gfs_tool df
MountPoint command. In the following example, the file system mounted at /mnt/gfs uses 8
journals.

[root@tng3-1 gfs]# gfs_tool df /mnt/gfs
/mnt/gfs:
 SB lock proto = "lock_dlm"
 SB lock table = "tng3-cluster:mydata1"
 SB ondisk format = 1309
 SB multihost format = 1401
 Block size = 4096
 Journals = 8
 Resource Groups = 76
 Mounted lock proto = "lock_dlm"
 Mounted lock table = "tng3-cluster:mydata1"
 Mounted host data = "jid=0:id=196609:first=1"
 Journal number = 0
 Lock module flags = 0
 Local flocks = FALSE
 Local caching = FALSE
 Oopses OK = FALSE

 Type Total Used Free use%
 --
 inodes 33 33 0 100%
 metadata 38 2 36 5%
 data 4980077 178 4979899 0%

After running the gfs_jadd command, you can run the gfs_tool df MountPoint command
again to check that the new journals have been added to the file system.

Examples

29

Examples
In this example, one journal is added to the file system that is mounted at the /mnt/gfs directory. The
underlying logical volume for this file system is extended before the journal can be added.

[root@tng3-1 ~]# lvextend -L35G /dev/gfsvg/gfslv
 Extending logical volume gfslv to 35.00 GB
 Logical volume gfslv successfully resized
[root@tng3-1 ~]# gfs_jadd -j1 /mnt/gfs
FS: Mount Point: /mnt/gfs
FS: Device: /dev/mapper/gfsvg-gfslv
FS: Options: rw,hostdata=jid=0:id=196609:first=1
FS: Size: 5242877
DEV: Size: 9175040
Preparing to write new FS information...
Done.

In this example, two journals are added to the file system on the /mnt/gfs directory.

[root@tng3-1 ~]# gfs_jadd -j2 /mnt/gfs
FS: Mount Point: /mnt/gfs
FS: Device: /dev/mapper/gfsvg-gfslv
FS: Options: rw,hostdata=jid=0:id=196609:first=1
FS: Size: 5275632
DEV: Size: 9175040
Preparing to write new FS information...
Done.

Complete Usage

gfs_jadd [Options] {MountPoint | Device} [MountPoint | Device]

MountPoint
Specifies the directory where the GFS file system is mounted.

Device
Specifies the device node of the file system.

Table 3.4, “GFS-specific Options Available When Adding Journals” describes the GFS-specific options
that can be used when adding journals to a GFS file system.

Table 3.4. GFS-specific Options Available When Adding Journals

Flag Parameter Description

-h Help. Displays short usage message.

-J MegaBytes Specifies the size of the new journals in megabytes.
Default journal size is 128 megabytes. The minimum
size is 32 megabytes. To add journals of different sizes
to the file system, the gfs_jadd command must be
run for each size journal. The size specified is rounded
down so that it is a multiple of the journal-segment size
that was specified when the file system was created.

Chapter 3. Managing GFS

30

Flag Parameter Description

-j Number Specifies the number of new journals to be added by the
gfs_jadd command. The default value is 1.

-T Test. Do all calculations, but do not write any data to the
disk and do not add journals to the file system. Enabling
this flag helps discover what the gfs_jadd command
would have done if it were run without this flag. Using
the -v flag with the -T flag turns up the verbosity level
to display more information.

-q Quiet. Turns down the verbosity level.

-V Displays command version information.

-v Turns up the verbosity of messages.

3.9. Direct I/O

Direct I/O is a feature of the file system whereby file reads and writes go directly from the applications
to the storage device, bypassing the operating system read and write caches. Direct I/O is used only
by applications (such as databases) that manage their own caches.

An application invokes direct I/O by opening a file with the O_DIRECT flag. Alternatively, GFS can
attach a direct I/O attribute to a file, in which case direct I/O is used regardless of how the file is
opened.

When a file is opened with O_DIRECT, or when a GFS direct I/O attribute is attached to a file, all I/O
operations must be done in block-size multiples of 512 bytes. The memory being read from or written
to must also be 512-byte aligned.

Note

Performing I/O through a memory mapping and also via direct I/O to the same file at the same
time may result in the direct I/O being failed with an I/O error. This occurs because the page
invalidation required for the direct I/O can race with a page fault generated through the mapping.
This is a problem only when the memory mapped I/O and the direct I/O are both performed on
the same node as each other, and to the same file at the same point in time. A workaround is
to use file locking to ensure that memory mapped (i.e., page faults) and direct I/O do not occur
simultaneously on the same file.

The Oracle database, which is one of the main direct I/O using applications, does not memory
map the files to which it uses direct I/O and thus is unaffected. In addition, writing to a file that is
memory mapped will succeed, as expected, unless there are page faults in flight at that point in
time. The mmap system call on its own is safe when direct I/O is in use.

One of the following methods can be used to enable direct I/O on a file:

• O_DIRECT

• GFS file attribute

• GFS directory attribute

O_DIRECT

31

3.9.1. O_DIRECT

If an application uses the O_DIRECT flag on an open() system call, direct I/O is used for the opened
file.

To cause the O_DIRECT flag to be defined with recent glibc libraries, define _GNU_SOURCE at the
beginning of a source file before any includes, or define it on the cc line when compiling.

3.9.2. GFS File Attribute

The gfs_tool command can be used to assign (set) a direct I/O attribute flag, directio, to a GFS
file. The directio flag can also be cleared.

You can use the gfs_tool stat filename to check what flags have been set for a GFS file. The
output for this command includes a Flags: at the end of the display followed by a listing of the flags
that are set for the indicated file.

Usage
Setting the directio Flag

gfs_tool setflag directio File

Clearing the directio Flag

gfs_tool clearflag directio File

File
Specifies the file where the directio flag is assigned.

Example
In this example, the command sets the directio flag on the file named datafile in directory /
mnt/gfs.

gfs_tool setflag directio /mnt/gfs/datafile

The following command checks whether the directio flag is set for /mnt/gfs/datafile. The
output has been elided to show only the relevant information.

[root@tng3-1 gfs]# gfs_tool stat /mnt/gfs/datafile
 mh_magic = 0x01161970
...

Flags:
 directio

3.9.3. GFS Directory Attribute

Chapter 3. Managing GFS

32

The gfs_tool command can be used to assign (set) a direct I/O attribute flag, inherit_directio,
to a GFS directory. Enabling the inherit_directio flag on a directory causes all newly
created regular files in that directory to automatically inherit the directio flag. Also, the
inherit_directio flag is inherited by any new subdirectories created in the directory. The
inherit_directio flag can also be cleared.

Usage
Setting the inherit_directio flag

gfs_tool setflag inherit_directio Directory

Clearing the inherit_directio flag

gfs_tool clearflag inherit_directio Directory

Directory
Specifies the directory where the inherit_directio flag is set.

Example
In this example, the command sets the inherit_directio flag on the directory named /mnt/gfs/
data.

gfs_tool setflag inherit_directio /mnt/gfs/data

This command displays the flags that have been set for the /mnt/gfs/data directory. The full output
has been truncated.

[root@tng3-1 gfs]# gfs_tool stat /mnt/gfs/data
...
Flags:
 inherit_directio

3.10. Data Journaling

Ordinarily, GFS writes only metadata to its journal. File contents are subsequently written to disk by
the kernel's periodic sync that flushes file system buffers. An fsync() call on a file causes the file's
data to be written to disk immediately. The call returns when the disk reports that all data is safely
written.

Data journaling can result in a reduced fsync() time, especially for small files, because the file data
is written to the journal in addition to the metadata. An fsync() returns as soon as the data is written
to the journal, which can be substantially faster than the time it takes to write the file data to the main
file system.

Applications that rely on fsync() to sync file data may see improved performance by using data
journaling. Data journaling can be enabled automatically for any GFS files created in a flagged
directory (and all its subdirectories). Existing files with zero length can also have data journaling turned
on or off.

Usage

33

Using the gfs_tool command, data journaling is enabled on a directory (and all its subdirectories)
or on a zero-length file by setting the inherit_jdata or jdata attribute flags to the directory or file,
respectively. The directory and file attribute flags can also be cleared.

Usage
Setting and Clearing the inherit_jdata Flag

gfs_tool setflag inherit_jdata Directory
gfs_tool clearflag inherit_jdata Directory

Setting and Clearing the jdata Flag

gfs_tool setflag jdata File
gfs_tool clearflag jdata File

Directory
Specifies the directory where the flag is set or cleared.

File
Specifies the zero-length file where the flag is set or cleared.

Examples
This example shows setting the inherit_jdata flag on a directory. All files created in the directory
or any of its subdirectories will have the jdata flag assigned automatically. Any data written to the
files will be journaled. This example also shows the gfs_tool stat command you can use to verify
what flags are set for a directory; the output has been elided to show only the relevant information.

[root@tng3-1]# gfs_tool setflag inherit_jdata /mnt/gfs/data
[root@tng3-1]# gfs_tool stat /mnt/gfs/data
...
Flags:
 inherit_jdata

This example shows setting the jdata flag on a file. The file must have a size of zero when you set
this flag. Any data written to the file will be journaled. This example also shows the gfs_tool stat
command you can use to verify what flags are set for a file; the output has been elided to show only
the relevant information.

[root@tng3-1]# gfs_tool setflag jdata /mnt/gfs/datafile
[root@tng3-1]# gfs_tool stat /mnt/gfs/datafile
...
Flags:
 jdata

3.11. Configuring atime Updates

Each file inode and directory inode has three time stamps associated with it:

Chapter 3. Managing GFS

34

• ctime — The last time the inode status was changed

• mtime — The last time the file (or directory) data was modified

• atime — The last time the file (or directory) data was accessed

If atime updates are enabled as they are by default on GFS and other Linux file systems then every
time a file is read, its inode needs to be updated.

Because few applications use the information provided by atime, those updates can require a
significant amount of unnecessary write traffic and file-locking traffic. That traffic can degrade
performance; therefore, it may be preferable to turn off atime updates.

Two methods of reducing the effects of atime updating are available:

• Mount with noatime

• Tune GFS atime quantum

3.11.1. Mount with noatime

A standard Linux mount option, noatime, can be specified when the file system is mounted, which
disables atime updates on that file system.

Usage

mount BlockDevice MountPoint -o noatime

BlockDevice
Specifies the block device where the GFS file system resides.

MountPoint
Specifies the directory where the GFS file system should be mounted.

Example
In this example, the GFS file system resides on the /dev/vg01/lvol0 and is mounted on directory /
gfs with atime updates turned off.

mount /dev/vg01/lvol0 /gfs -o noatime

3.11.2. Tune GFS atime Quantum

When atime updates are enabled, GFS (by default) only updates them once an hour. The time
quantum is a tunable parameter that can be adjusted using the gfs_tool command.

Each GFS node updates the access time based on the difference between its system time and
the time recorded in the inode. It is required that system clocks of all GFS nodes in a cluster be
synchronized. If a node's system time is out of synchronization by a significant fraction of the tunable
parameter, atime_quantum, then atime updates are written more frequently. Increasing the
frequency of atime updates may cause performance degradation in clusters with heavy work loads.

Suspending Activity on a File System

35

To see the current values of the GFS tunable parameters, including atime_quantum, you can use the
gfs_tool gettune, as described in Section 3.5, “Displaying GFS Tunable Parameters”. The default
value for atime_quantum is 3600 seconds.

The gfs_tool settune command is used to change the atime_quantum parameter value. It must
be set on each node and each time the file system is mounted. The setting is not persistent across
unmounts.

Usage
Changing the atime_quantum Parameter Value

gfs_tool settune MountPoint atime_quantum Seconds

MountPoint
Specifies the directory where the GFS file system is mounted.

Seconds
Specifies the update period in seconds.

Example
In this example, the atime update period is set to once a day (86,400 seconds) for the GFS file
system on mount point /gfs.

gfs_tool settune /gfs atime_quantum 86400

3.12. Suspending Activity on a File System

You can suspend write activity to a file system by using the gfs_tool freeze command.
Suspending write activity allows hardware-based device snapshots to be used to capture the file
system in a consistent state. The gfs_tool unfreeze command ends the suspension.

Usage
Start Suspension

gfs_tool freeze MountPoint

End Suspension

gfs_tool unfreeze MountPoint

MountPoint
Specifies the file system.

Examples
This example suspends writes to file system /gfs.

Chapter 3. Managing GFS

36

gfs_tool freeze /gfs

This example ends suspension of writes to file system /gfs.

gfs_tool unfreeze /gfs

3.13. Displaying Extended GFS Information and Statistics

You can use the gfs_tool command to gather a variety of details about GFS. This section describes
typical use of the gfs_tool command for displaying space usage, statistics, and extended status.

The gfs_tool command provides additional action flags (options) not listed in this section. For more
information about other gfs_tool flags, refer to the gfs_tool man page.

3.13.1. Displaying GFS Space Usage

You can use the df flag of the gfs_tool to display a space-usage summary of a given file system.
The information is more detailed than a standard df.

Usage

gfs_tool df MountPoint

MountPoint
Specifies the file system to which the action applies.

Example
This example reports extended file system usage about file system /mnt/gfs.

[root@ask-07 ~]# gfs_tool df /mnt/gfs
/gfs:
 SB lock proto = "lock_dlm"
 SB lock table = "ask_cluster:mydata1"
 SB ondisk format = 1309
 SB multihost format = 1401
 Block size = 4096
 Journals = 8
 Resource Groups = 605
 Mounted lock proto = "lock_dlm"
 Mounted lock table = "ask_cluster:mydata1"
 Mounted host data = "jid=0:id=786433:first=1"
 Journal number = 0
 Lock module flags = 0
 Local flocks = FALSE
 Local caching = FALSE
 Oopses OK = FALSE

 Type Total Used Free use%
 --
 inodes 5 5 0 100%

Displaying GFS Counters

37

 metadata 78 15 63 19%
 data 41924125 0 41924125 0%

3.13.2. Displaying GFS Counters

You can use the counters flag of the gfs_tool to display statistics about a file system. If the -c
option is used, the gfs_tool command continues to run, displaying statistics once per second.

Note

The majority of the GFS counters reflect the internal operation of the GFS file system and are for
development purposes only.

The gfs_tool counters command displays the following statistics.

locks
The number of gfs_glock structures that currently exist in gfs.

locks held
The number of existing gfs_glock structures that are not in the UNLOCKED state.

freeze count
A freeze count greater than 0 means the file system is frozen. A freeze count of 0 means the file
system is not frozen. Each gfs_tool freeze command increments this count. Each gfs_tool
unfreeze command decrements this count.

incore inodes
The number of gfs_inode structures that currently exist in gfs.

metadata buffers
The number of gfs_bufdata structures that currently exist in gfs.

unlinked inodes
The gfs_inoded daemon links deleted inodes to a global list and cleans them up every 15
seconds (a period that is tunable). This number is the list length. It is related to the number of
gfs_unlinked structures currently in gfs.

quota IDs
The number of gfs_quota_data structures that currently exist in gfs.

incore log buffers
The number of buffers in in-memory journal log (incore log), before they are flushed to disk.

log space used
The the percentage of journal space used.

meta header cache entries
The number of gfs_meta_header_cache structures that currently exist in gfs.

glock dependencies
The number of gfs_depend structures that currently exist in gfs.

Chapter 3. Managing GFS

38

glocks on reclaim list
The number of glocks on the reclaim list.

log wraps
The number of times journal has wrapped around.

outstanding LM calls
obsolete

outstanding BIO calls
obsolete

fh2dentry misses
The number of times an NFS call could not find a dentry structure in the cache.

glocks reclaimed
The number of glocks which have been reclaimed.

glock dq calls
The number of glocks released since the file system was mounted.

glock prefetch calls
The number of glock prefetch calls.

lm_lock calls
The number of times the lock manager has been contacted to obtain a lock.

lm_unlock calls
The number of times the lock manager has been contacted to release a lock.

lm callbacks
The number of times the lock manager has been contacted to change a lock state.

address operations
The number of address space call operations (readpage, writepage, directIO,
prepare_write, and commit_write)

dentry operations
The number of times a seek operation has been performed on the vfs dentry structure.

export operations
The number of times a seek operation has been performed on the nfs dentry structure.

file operations
The number of file operations that have been invoked (read, write, seek, etc).

inode operations
The number of inode operations that have been invoked (create, delete, symlink, etc.).

super operations
The number of super block operations.

vm operations
The number of times the mmap function has been called. mmap call count

Displaying Extended Status

39

block I/O reads
obsolete

block I/O writes
obsolete

Usage

gfs_tool counters MountPoint

MountPoint
Specifies the file system to which the action applies.

Example
This example reports statistics about the file system mounted at /mnt/gfs.

[root@tng3-1 gfs]# gfs_tool counters /mnt/gfs

 locks 165
 locks held 133
 freeze count 0
 incore inodes 34
 metadata buffers 5
 unlinked inodes 0
 quota IDs 0
 incore log buffers 0
 log space used 0.05%
 meta header cache entries 5
 glock dependencies 5
 glocks on reclaim list 0
 log wraps 0
 outstanding LM calls 0
 outstanding BIO calls 0
 fh2dentry misses 0
 glocks reclaimed 345
 glock nq calls 11632
 glock dq calls 11596
 glock prefetch calls 84
 lm_lock calls 545
 lm_unlock calls 237
 lm callbacks 782
 address operations 1075
 dentry operations 374
 export operations 0
 file operations 1428
 inode operations 1451
 super operations 21239
 vm operations 0
 block I/O reads 0
 block I/O writes 0

3.13.3. Displaying Extended Status

You can use the stat flag of the gfs_tool to display extended status information about a GFS file.

Chapter 3. Managing GFS

40

Note

The information that the gfs_tool stat command displays reflects internal file system
information. This information is intended for development purposes only.

Usage

gfs_tool stat File

File
Specifies the file from which to get information.

Example
This example reports extended file status about file /gfs/datafile.

[root@tng3-1 gfs]# gfs_tool stat /gfs/datafile
 mh_magic = 0x01161970
 mh_type = 4
 mh_generation = 3
 mh_format = 400
 mh_incarn = 1
 no_formal_ino = 66
 no_addr = 66
 di_mode = 0600
 di_uid = 0
 di_gid = 0
 di_nlink = 1
 di_size = 503156
 di_blocks = 124
 di_atime = 1207672023
 di_mtime = 1207672023
 di_ctime = 1207672023
 di_major = 0
 di_minor = 0
 di_rgrp = 17
 di_goal_rgrp = 17
 di_goal_dblk = 371
 di_goal_mblk = 44
 di_flags = 0x00000000
 di_payload_format = 0
 di_type = 1
 di_height = 1
 di_incarn = 0
 di_pad = 0
 di_depth = 0
 di_entries = 0
 no_formal_ino = 0
 no_addr = 0
 di_eattr = 0
 di_reserved =
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Repairing a File System

41

3.14. Repairing a File System

When nodes fail with the file system mounted, file system journaling allows fast recovery. However,
if a storage device loses power or is physically disconnected, file system corruption may occur.
(Journaling cannot be used to recover from storage subsystem failures.) When that type of corruption
occurs, you can recover the GFS file system by using the gfs_fsck command.

Important

The gfs_fsck command must be run only on a file system that is unmounted from all nodes.

Important

You should not check a GFS file system at boot time with the gfs_fsck command. The
gfs_fsck command can not determine at boot time whether the file system is mounted by
another node in the cluster. You should run the gfs_fsck command manually only after the
system boots.

To ensure that the gfs_fsck command does not run on a GFS file system at boot time, modify
the /etc/fstab file so that the final two columns for a GFS file system mount point show "0 0"
rather than "1 1" (or any other numbers), as in the following example:

/dev/VG12/lv_svr_home /svr_home gfs defaults,noatime,nodiratime,noquota 0 0

Chapter 3. Managing GFS

42

Note

The gfs_fsck command has changed from previous releases of Red Hat GFS in the following
ways:

• Pressing Ctrl+C while running the gfs_fsck interrupts processing and displays a prompt
asking whether you would like to abort the command, skip the rest of the current pass, or
continue processing.

• You can increase the level of verbosity by using the -v flag. Adding a second -v flag increases
the level again.

• You can decrease the level of verbosity by using the -q flag. Adding a second -q flag
decreases the level again.

• The -n option opens a file system as read-only and answers no to any queries automatically.
The option provides a way of trying the command to reveal errors without actually allowing the
gfs_fsck command to take effect.

Refer to the gfs_fsck man page, gfs_fsck(8), for additional information about other
command options.

Running the gfs_fsck command requires system memory above and beyond the memory used for
the operating system and kernel. Each block of memory in the file system itself requires approximately
one byte of additional memory. So to estimate the amount of memory you will need to run the
gfs_fsck command on your file system, divide the file system size (in bytes) by the block size.

For example, for a GFS file system that is 16TB with a block size of 4K, divide 16TB by 4K:

 17592186044416 / 4096 = 4294967296

This file system requires approximately 4GB of free memory to run the gfs_fsck command. Note
that if the block size was 1K, running the gfs_fsck command would require four times the memory,
or 16GB.

Usage

gfs_fsck -y BlockDevice

-y
The -y flag causes all questions to be answered with yes. With the -y flag specified, the
gfs_fsck command does not prompt you for an answer before making changes.

BlockDevice
Specifies the block device where the GFS file system resides.

Example

43

Example
In this example, the GFS file system residing on block device /dev/gfsvg/gfslv is repaired. All
queries to repair are automatically answered with yes. Because this example uses the -v (verbose)
option, the sample output is extensive and repetitive lines have been elided.

[root@tng3-1]# gfs_fsck -v -y /dev/gfsvg/gfslv
Initializing fsck
Initializing lists...
Initializing special inodes...
Validating Resource Group index.
Level 1 check.
92 resource groups found.
(passed)
Setting block ranges...
Creating a block list of size 9175040...
Clearing journals (this may take a while)Clearing journal 0
Clearing journal 1
Clearing journal 2
...
Clearing journal 10

Journals cleared.
Starting pass1
Checking metadata in Resource Group 0
Checking metadata in Resource Group 1
...
Checking metadata in Resource Group 91
Pass1 complete
Starting pass1b
Looking for duplicate blocks...
No duplicate blocks found
Pass1b complete
Starting pass1c
Looking for inodes containing ea blocks...
Pass1c complete
Starting pass2
Checking directory inodes.
Pass2 complete
Starting pass3
Marking root inode connected
Checking directory linkage.
Pass3 complete
Starting pass4
Checking inode reference counts.
Pass4 complete
Starting pass5
...
Updating Resource Group 92
Pass5 complete
Writing changes to disk
Syncing the device.
Freeing buffers.

3.15. Context-Dependent Path Names

Context-Dependent Path Names (CDPNs) allow symbolic links to be created that point to variable
destination files or directories. The variables are resolved to real files or directories each time an
application follows the link. The resolved value of the link depends on the node or user following the
link.

Chapter 3. Managing GFS

44

CDPN variables can be used in any path name, not just with symbolic links. However, the CDPN
variable name cannot be combined with other characters to form an actual directory or file name. The
CDPN variable must be used alone as one segment of a complete path.

Usage
For a Normal Symbolic Link

ln -s Target LinkName

Target
Specifies an existing file or directory on a file system.

LinkName
Specifies a name to represent the real file or directory on the other end of the link.

For a Variable Symbolic Link

ln -s Variable LinkName

Variable
Specifies a special reserved name from a list of values (refer to Table 3.5, “CDPN Variable
Values”) to represent one of multiple existing files or directories. This string is not the name of an
actual file or directory itself. (The real files or directories must be created in a separate step using
names that correlate with the type of variable used.)

LinkName
Specifies a name that will be seen and used by applications and will be followed to get to one of
the multiple real files or directories. When LinkName is followed, the destination depends on the
type of variable and the node or user doing the following.

Table 3.5. CDPN Variable Values

Variable Description

@hostname This variable resolves to a real file or directory named with the
hostname string produced by the output of the following command:
echo `uname -n`

@mach This variable resolves to a real file or directory name with the machine-
type string produced by the output of the following command: echo
`uname -m`

@os This variable resolves to a real file or directory named with the
operating-system name string produced by the output of the following
command: echo `uname -s`

@sys This variable resolves to a real file or directory named with the
combined machine type and OS release strings produced by the
output of the following command: echo `uname -m`_`uname -s`

@uid This variable resolves to a real file or directory named with the user ID
string produced by the output of the following command: echo `id -
u`

Example

45

Variable Description

@gid This variable resolves to a real file or directory named with the group
ID string produced by the output of the following command: echo `id
-g`

Example
In this example, there are three nodes with hostnames n01, n02 and n03. Applications on each node
uses directory /gfs/log/, but the administrator wants these directories to be separate for each
node. To do this, no actual log directory is created; instead, an @hostname CDPN link is created with
the name log. Individual directories /gfs/n01/, /gfs/n02/, and /gfs/n03/ are created that will
be the actual directories used when each node references /gfs/log/.

n01# cd /gfs
n01# mkdir n01 n02 n03
n01# ln -s @hostname log

n01# ls -l /gfs
lrwxrwxrwx 1 root root 9 Apr 25 14:04 log -> @hostname/
drwxr-xr-x 2 root root 3864 Apr 25 14:05 n01/
drwxr-xr-x 2 root root 3864 Apr 25 14:06 n02/
drwxr-xr-x 2 root root 3864 Apr 25 14:06 n03/

n01# touch /gfs/log/fileA
n02# touch /gfs/log/fileB
n03# touch /gfs/log/fileC

n01# ls /gfs/log/
fileA
n02# ls /gfs/log/
fileB
n03# ls /gfs/log/
fileC

3.16. The GFS Withdraw Function

The GFS withdraw function is a data integrity feature of GFS file systems in a cluster. If the GFS
kernel module detects an inconsistency in a GFS file system following an I/O operation, the file system
becomes unavailable to the cluster. The I/O operation stops and the system waits for further I/O
operations to stop with an error, preventing further damage. When this occurs, you can stop any other
services or applications manually, after which you can reboot and remount the GFS file system to
replay the journals. If the problem persists, you can unmount the file system from all nodes in the
cluster and perform file system recovery with the gfs_fsck command. The GFS withdraw function is
less severe than a kernel panic, which would cause another node to fence the node.

An example of an inconsistency that would yield a GFS withdraw is an incorrect block count. When
the GFS kernel module deletes a file from a file system, it systematically removes all the data and
metadata blocks associated with that file. When it is done, it checks the block count. If the block count
is not one (meaning all that is left is the disk inode itself), that indicates a file system inconsistency
since the block count did not match the list of blocks found.

You can override the GFS withdraw function by mounting the file system with the -o errors=panic
option specified. When this option is specified, any errors that would normally cause the system to
withdraw cause the system to panic instead. This stops the node's cluster communications, which
causes the node to be fenced.

Chapter 3. Managing GFS

46

Internally, the GFS2 withdraw function works by having the kernel send a message to the
gfs_controld daemon requesting withdraw. The gfs_controld daemon runs the dmsetup
program to place the device mapper error target underneath the filesystem preventing further access
to the block device. It then tells the kernel that this has been completed. This is the reason for the
GFS2 support requirement to always use a CLVM device under GFS2, since otherwise it is not
possible to insert a device mapper target.

The purpose of the device mapper error target is to ensure that all future I/O operations will result in
an I/O error that will allow the filesystem to be unmounted in an orderly fashion. As a result, when the
withdraw occurs, it is normal to see a number of I/O errors from the device mapper device reported in
the system logs.

Occasionally, the withdraw may fail if it is not possible for the dmsetup program to insert the error
target as requested. This can happen if there is a shortage of memory at the point of the withdraw and
memory cannot be reclaimed due to the problem that triggered the withdraw in the first place.

A withdraw does not always mean that there is an error in GFS2. Sometimes the withdraw function
can be triggered by device I/O errors relating to the underlying block device. It is highly recommended
to check the logs to see if that is the case if a withdraw occurs.

47

Appendix A. Revision History
Revision 6.0-3 Mon Feb 20 2012 Steven Levine slevine@redhat.com

Release for GA of Red Hat Enterprise Linux 5.8

Revision 6.0-2 Thu Dec 15 2011 Steven Levine slevine@redhat.com
Beta release of Red Hat Enterprise Linux 5.8

Revision 6.0-1 Thu Nov 10 2011 Steven Levine slevine@redhat.com
Resolves: #758843
Notes CLVM requirement for clustered environment.

Resolves: #736157
Adds note warning not to check a GFS file system at boot time.

Revision 5.0-1 Thu Jul 21 2011 Steven Levine slevine@redhat.com
Resolves: #458880
Adds note about using file locking to ensure that memory mapped and direct I/O do not occur
simultaneously on the same file.

Resolves: #676133
Clarifies section on the withdraw function.

Revision 4.0-1 Thu Dec 23 2010 Steven Levine slevine@redhat.com
Resolves: #661520
Updates information about maximum file system size.

Resolves: #667552
Adds note to overview about issuing operations on one directory from more than one node at the
same time.

Revision 3.0-2 Tue Aug 3 2010 Steven Levine slevine@redhat.com
Resolves: #562251
Adds information about the localflocks mount option and when it may be required.

Revision 3.0-1 Thu Mar 18 2010 Steven Levine slevine@redhat.com
Resolves: #568179
Adds note clarifying support policy for single-node system.

Resolves: #562199
Adds note clarifying 16-node limitation.

Resolves: #515348
Documents new -o errors mount option.

Resolves: #573750
Documents memory requirements for gfs_fsck.

mailto:slevine@redhat.com
mailto:slevine@redhat.com
mailto:slevine@redhat.com
mailto:slevine@redhat.com
mailto:slevine@redhat.com
mailto:slevine@redhat.com
mailto:slevine@redhat.com

Appendix A. Revision History

48

Resolves: #574462
Clarifies issue of gfs requiring CLVM for Red Hat support.

Revision 2.0-1 Tue Aug 18 2009 Steven Levine slevine@redhat.com
Resolves: #515807
Adds note clarifying that you cannot reduce the size of an existing file system.

Resolves: #480002
Adds caveat about unmounting a file system manually if you mounted it manually.

Resolves: #458604
Adds section on GFS withdraw function.

Revision 1.0-1 Thu Jan 29 2009

mailto:slevine@redhat.com

49

Index

A
adding journals to a file system, 27
atime, configuring updates, 33

mounting with noatime , 34
tuning atime quantum, 34

audience, v

C
CDPN variable values table, 44
configuration, before, 5
configuration, initial,

prerequisite tasks, 7
creating a file system, 11

D
data journaling, 32
direct I/O, 30

directory attribute, 31
file attribute, 31
O_DIRECT , 31

displaying extended GFS information and
statistics, 36
displaying GFS counters, 37
displaying GFS extended status, 39
displaying GFS space usage, 36
DLM (Distributed Lock Manager), 2

F
features, new and changed, 2
feedback, viii, viii
file system

adding journals, 27
atime, configuring updates, 33

mounting with noatime , 34
tuning atime quantum, 34

context-dependent path names (CDPNs), 43
creating, 11
data journaling, 32
direct I/O, 30

directory attribute, 31
file attribute, 31
O_DIRECT , 31

growing, 26
mounting, 15, 18
quota management, 20

disabling/enabling quota accounting, 25
disabling/enabling quota enforcement, 24
displaying quota limits, 21
setting quotas, 20
synchronizing quotas, 23

repairing, 41
suspending activity, 35
unmounting, 17, 18

G
GFS

atime, configuring updates, 33
mounting with noatime , 34
tuning atime quantum, 34

direct I/O, 30
directory attribute, 31
file attribute, 31
O_DIRECT , 31

displaying counters, 37
displaying extended information and statistics,
36
displaying extended status, 39
displaying space usage, 36
managing,
quota management, 20

disabling/enabling quota accounting, 25
disabling/enabling quota enforcement, 24
displaying quota limits, 21
setting quotas, 20
synchronizing quotas, 23

withdraw function, 45
GFS file system maximum size, , 5
GFS software components, 4
GFS software components table, 4
GFS-specific options for adding journals table, 29
GFS-specific options for expanding file systems
table, 27
gfs_mkfs command options table, 14
growing a file system, 26
GULM (Grand Unified Lock Manager), 2

I
initial tasks

setup, initial, 7
introduction,

audience, v

M
managing GFS,
maximum size, GFS file system, , 5
mount table, 16
mounting a file system, 15, 18

O
overview,

configuration, before, 5
economy, 2
features, new and changed, 2

Index

50

GFS software components, 4
performance, 2
scalability, 2

P
parameters, GFS tunable, 18
path names, context-dependent (CDPNs), 43
preface (see introduction)
prerequisite tasks

configuration, initial, 7

Q
quota management, 20

disabling/enabling quota accounting, 25
disabling/enabling quota enforcement, 24
displaying quota limits, 21
setting quotas, 20
synchronizing quotas, 23

R
repairing a file system, 41

S
setup, initial

initial tasks, 7
suspending activity on a file system, 35
system hang at unmount, 18

T
tables

CDPN variable values, 44
GFS software components, 4
GFS-specific options for adding journals, 29
GFS-specific options for expanding file
systems, 27
gfs_mkfs command options, 14
mount options, 16

tunable parameters, GFS, 18

U
unmount, system hang, 18
unmounting a file system, 17, 18

W
withdraw function, GFS, 45

	Global File System
	Table of Contents
	Introduction
	1. Audience
	2. Related Documentation
	3. Document Conventions
	3.1. Typographic Conventions
	3.2. Pull-quote Conventions
	3.3. Notes and Warnings

	4. Feedback

	Chapter 1. GFS Overview
	1.1. New and Changed Features
	1.2. Performance, Scalability, and Economy
	1.2.1. Superior Performance and Scalability
	1.2.2. Economy and Performance

	1.3. GFS Software Components
	1.4. Before Setting Up GFS

	Chapter 2. Getting Started
	2.1. Prerequisite Tasks
	2.2. Initial Setup Tasks

	Chapter 3. Managing GFS
	3.1. Creating a File System
	3.2. Mounting a File System
	3.3. Unmounting a File System
	3.4. Special Considerations when Mounting GFS File Systems
	3.5. Displaying GFS Tunable Parameters
	3.6. GFS Quota Management
	3.6.1. Setting Quotas
	3.6.2. Displaying Quota Limits and Usage
	3.6.3. Synchronizing Quotas
	3.6.4. Disabling/Enabling Quota Enforcement
	3.6.5. Disabling/Enabling Quota Accounting

	3.7. Growing a File System
	3.8. Adding Journals to a File System
	3.9. Direct I/O
	3.9.1. O_DIRECT
	3.9.2. GFS File Attribute
	3.9.3. GFS Directory Attribute

	3.10. Data Journaling
	3.11. Configuring atime Updates
	3.11.1. Mount with noatime
	3.11.2. Tune GFS atime Quantum

	3.12. Suspending Activity on a File System
	3.13. Displaying Extended GFS Information and Statistics
	3.13.1. Displaying GFS Space Usage
	3.13.2. Displaying GFS Counters
	3.13.3. Displaying Extended Status

	3.14. Repairing a File System
	3.15. Context-Dependent Path Names
	3.16. The GFS Withdraw Function

	Appendix A. Revision History
	Index

