
Red Hat Enterprise Linux 5

Virtualization Guide
Virtualization Documentation

Virtualization Guide

Red Hat Enterprise Linux 5 Virtualization Guide
Virtualization Documentation
Edition 5.8

Author rhelv5-list@redhat.com

Copyright © 2008, 2009, 2010, 2011 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

The Red Hat Enterprise Linux Virtualization Guide contains information on installation, configuring,
administering, and troubleshooting virtualization technologies included with Red Hat Enterprise Linux.

mailto:rhelv5-list@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface ix
1. About this book .. ix
2. Document Conventions ... ix

2.1. Typographic Conventions ... ix
2.2. Pull-quote Conventions .. xi
2.3. Notes and Warnings .. xi

3. We need your feedback ... xii
3.1. Technical review requests .. xii

4. What is Virtualization? ... xiii
5. Types of Virtualization ... xiii

5.1. Full Virtualization .. xiii
5.2. Para-Virtualization .. xiii
5.3. Para-virtualized drivers ... xiii

6. How CIOs should think about virtualization ... xiii

I. Requirements and Limitations for Virtualization with Red Hat Enterprise Linux 1

1. System requirements 3

2. Xen restrictions and support 5

3. KVM restrictions and support 7

4. Hyper-V restrictions and support 9

5. Virtualization limitations 11
5.1. General limitations for virtualization ... 11
5.2. KVM limitations .. 11
5.3. Xen limitations .. 12
5.4. Application limitations ... 14

II. Installation 15

6. Installing the virtualization packages 17
6.1. Installing Xen with a new Red Hat Enterprise Linux installation 17
6.2. Installing Xen packages on an existing Red Hat Enterprise Linux system 21
6.3. Installing KVM with a new Red Hat Enterprise Linux installation 22
6.4. Installing KVM packages on an existing Red Hat Enterprise Linux system 27

7. Virtualized guest installation overview 29
7.1. Creating guests with virt-install .. 29
7.2. Creating guests with virt-manager ... 29
7.3. Installing guests with PXE ... 48

8. Guest operating system installation procedures 55
8.1. Installing Red Hat Enterprise Linux 5 as a para-virtualized guest 55
8.2. Installing Red Hat Enterprise Linux as a fully virtualized guest 98
8.3. Installing Windows XP as a fully virtualized guest ... 114
8.4. Installing Windows Server 2003 as a fully virtualized guest 139
8.5. Installing Windows Server 2008 as a fully virtualized guest 144

III. Configuration 159

9. Virtualized storage devices 161
9.1. Creating a virtualized floppy disk controller ... 161
9.2. Adding storage devices to guests .. 162
9.3. Configuring persistent storage in Red Hat Enterprise Linux 5 165

Virtualization Guide

iv

9.4. Add a virtualized CD-ROM or DVD device to a guest .. 167

10. Network Configuration 169
10.1. Network address translation (NAT) with libvirt ... 169
10.2. Bridged networking with libvirt ... 170

11. Pre-Red Hat Enterprise Linux 5.4 Xen networking 175
11.1. Configuring multiple guest network bridges to use multiple Ethernet cards 175
11.2. Red Hat Enterprise Linux 5.0 laptop network configuration 177

12. Xen Para-virtualized Drivers 181
12.1. System requirements .. 182
12.2. Para-virtualization Restrictions and Support .. 183
12.3. Installing the Para-virtualized Drivers ... 185

12.3.1. Common installation steps .. 186
12.3.2. Installation and Configuration of Para-virtualized Drivers on Red Hat
Enterprise Linux 3 ... 187
12.3.3. Installation and Configuration of Para-virtualized Drivers on Red Hat
Enterprise Linux 4 ... 191
12.3.4. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 5 194
12.3.5. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 6 196

12.4. Para-virtualized Network Driver Configuration ... 197
12.5. Additional Para-virtualized Hardware Configuration ... 202

12.5.1. Virtualized Network Interfaces ... 202
12.5.2. Virtual Storage Devices .. 203

13. KVM Para-virtualized Drivers 205
13.1. Installing the KVM Windows para-virtualized drivers .. 205
13.2. Installing drivers with a virtualized floppy disk ... 217
13.3. Using KVM para-virtualized drivers for existing devices 218
13.4. Using KVM para-virtualized drivers for new devices .. 218

14. PCI passthrough 223
14.1. Adding a PCI device with virsh .. 224
14.2. Adding a PCI device with virt-manager ... 226
14.3. PCI passthrough with virt-install ... 231
14.4. PCI passthrough for para-virtualized Xen guests on Red Hat Enterprise Linux 232

15. SR-IOV 235
15.1. Introduction .. 235
15.2. Using SR-IOV ... 236
15.3. Troubleshooting SR-IOV .. 239

16. KVM guest timing management 241

IV. Administration 245

17. Server best practices 247

18. Security for virtualization 249
18.1. Storage security issues ... 249
18.2. SELinux and virtualization ... 249
18.3. SELinux ... 250
18.4. Virtualization firewall information .. 251

19. Managing guests with xend 253

20. Xen live migration 255
20.1. A live migration example ... 257

v

20.2. Configuring guest live migration ... 263

21. KVM live migration 265
21.1. Live migration requirements .. 265
21.2. Share storage example: NFS for a simple migration .. 266
21.3. Live KVM migration with virsh ... 267
21.4. Migrating with virt-manager ... 268

22. Remote management of virtualized guests 281
22.1. Remote management with SSH ... 281
22.2. Remote management over TLS and SSL ... 282
22.3. Transport modes ... 284

V. Virtualization Storage Topics 289

23. Using shared storage with virtual disk images 291
23.1. Using iSCSI for storing virtual disk images ... 291

23.1.1. How to set up an iSCSI target on Red Hat Enterprise Linux 291
23.1.2. How to configure iSCSI on a libvirt KVM host and provision a guest using
virt-install .. 293

VI. Virtualization Reference Guide 299

24. Virtualization tools 301

25. Managing guests with virsh 303

26. Managing guests with the Virtual Machine Manager (virt-manager) 313
26.1. The Add Connection window ... 313
26.2. The Virtual Machine Manager main window .. 314
26.3. The guest Overview tab .. 315
26.4. Virtual Machine graphical console ... 316
26.5. Starting virt-manager ... 317
26.6. Restoring a saved machine .. 319
26.7. Displaying guest details .. 320
26.8. Status monitoring .. 327
26.9. Displaying guest identifiers .. 329
26.10. Displaying a guest's status ... 330
26.11. Displaying virtual CPUs .. 331
26.12. Displaying CPU usage .. 332
26.13. Displaying memory usage .. 333
26.14. Managing a virtual network .. 334
26.15. Creating a virtual network .. 336

27. The xm command quick reference 345

28. Configuring the Xen kernel boot parameters 347

29. Configuring ELILO 349

30. libvirt configuration reference 353

31. Xen configuration files 355

VII. Tips and Tricks 363

32. Tips and tricks 365
32.1. Automatically starting guests ... 365
32.2. Changing between the KVM and Xen hypervisors ... 365

Virtualization Guide

vi

32.2.1. Xen to KVM ... 365
32.2.2. KVM to Xen ... 367

32.3. Using qemu-img ... 368
32.4. Overcommitting Resources .. 369
32.5. Modifying /etc/grub.conf ... 371
32.6. Verifying virtualization extensions ... 372
32.7. Accessing data from a guest disk image .. 373
32.8. Setting KVM processor affinities .. 375
32.9. Generating a new unique MAC address ... 379
32.10. Limit network bandwidth for a Xen guest .. 380
32.11. Configuring Xen processor affinities ... 381
32.12. Modifying the Xen hypervisor ... 381
32.13. Very Secure ftpd ... 382
32.14. Configuring LUN Persistence ... 382
32.15. Disable SMART disk monitoring for guests ... 384
32.16. Cleaning up old Xen configuration files ... 384
32.17. Configuring a VNC Server ... 384
32.18. Cloning guest configuration files .. 384
32.19. Duplicating an existing guest and its configuration file 385

33. Creating custom libvirt scripts 387
33.1. Using XML configuration files with virsh ... 387

VIII. Troubleshooting 389

34. Troubleshooting Xen 391
34.1. Debugging and troubleshooting Xen .. 391
34.2. Log files overview ... 392
34.3. Log file descriptions .. 393
34.4. Important directory locations .. 393
34.5. Troubleshooting with the logs .. 394
34.6. Troubleshooting with the serial console .. 394
34.7. Para-virtualized guest console access .. 395
34.8. Fully virtualized guest console access .. 395
34.9. Common Xen problems .. 395
34.10. Guest creation errors .. 396
34.11. Troubleshooting with serial consoles .. 396

34.11.1. Serial console output for Xen .. 396
34.11.2. Xen serial console output from para-virtualized guests 397
34.11.3. Serial console output from fully virtualized guests 397

34.12. Xen configuration files ... 398
34.13. Interpreting Xen error messages .. 399
34.14. The layout of the log directories ... 402

35. Troubleshooting 403
35.1. Identifying available storage and partitions ... 403
35.2. After rebooting Xen-based guests the console freezes 403
35.3. Virtualized Ethernet devices are not found by networking tools 403
35.4. Loop device errors .. 403
35.5. Failed domain creation caused by a memory shortage 404
35.6. Wrong kernel image error .. 404
35.7. Wrong kernel image error - non-PAE kernel on a PAE platform 405
35.8. Fully-virtualized 64 bit guest fails to boot .. 405
35.9. A missing localhost entry causes virt-manager to fail ... 405
35.10. Microcode error during guest boot ... 406

vii

35.11. Python depreciation warning messages when starting a virtual machine 406
35.12. Enabling Intel VT and AMD-V virtualization hardware extensions in BIOS 406
35.13. KVM networking performance .. 407

36. Troubleshooting the Xen para-virtualized drivers 411
36.1. Red Hat Enterprise Linux 5 Virtualization log file and directories 411
36.2. Para-virtualized guest fail to load on a Red Hat Enterprise Linux 3 guest
operating system ... 412
36.3. A warning message is displayed while installing the para-virtualized drivers on
Red Hat Enterprise Linux 3 ... 413
36.4. Manually loading the para-virtualized drivers .. 413
36.5. Verifying the para-virtualized drivers have successfully loaded 414
36.6. The system has limited throughput with para-virtualized drivers 414

Glossary 415

A. Additional resources 421
A.1. Online resources .. 421
A.2. Installed documentation .. 421

B. Colophon 423

viii

ix

Preface
The Red Hat Enterprise Linux Virtualization Guide covers all aspects of using and managing
virtualization products included with Red Hat Enterprise Linux.

1. About this book
This book is divided into 8 parts:
• System Requirements

• Installation

• Configuration

• Administration

• Storage

• Reference

• Tips and Tricks

• Troubleshooting

Key terms and concepts used throughout this book are covered in the Glossary.

This book covers virtualization topics for Red Hat Enterprise Linux 5. The KVM and Xen hypervisors
are provided with Red Hat Enterprise Linux 5. Both the KVM and Xen hypervisors support Full
virtualization. The Xen hypervisor also supports Para-virtualization. Refer to Section 4, “What is
Virtualization?” and the Glossary for more details on these terms.

2. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

2.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

x

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

Pull-quote Conventions

xi

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

2.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

2.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Preface

xii

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

3. We need your feedback

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you. Submit a report in Bugzilla: http://bugzilla.redhat.com/ against
Red Hat Enterprise Linux with the Virtualization_Guide component.

When submitting a bug report, be sure to mention the manual's identifier: Virtualization_Guide and
version number: 5.

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, include the section number and some of the surrounding text
so we can find it easily.

3.1. Technical review requests
All review requests are classified into one of the following five categories:

New content
content documented for the first time — an entirely new feature, procedure, or concept. For
example: "Section now describes the new procedure for creating bootable USB devices."

Correction
a factual error previously present in the text has been corrected. For example: "Section previously
stated (incorrectly) that IPv4 and IPv6 were both supported; section now states that IPv6 has
never been supported."

Clarification
material that was already factually correct but is now better explained. Clarifications are usually in
response to reader feedback that the previous content was confusing or misleading in some way.
For example: "Paths described in Example 1.2.3 now better reflect the directory structure of an
actual installed system."

Obsoletion
a description of a feature or a procedure has been dropped. Material might be obsolete because
of a feature that is no longer supported, a known issue that has been corrected, or hardware that
is now obsolete. For example, "Section no longer describes how to update kernel modules using a
floppy disk."

http://bugzilla.redhat.com/

What is Virtualization?

xiii

Verification
a request to check a fact, procedure, or whether material should be obsoleted. For example,
"Section describes how to connect to a generic iSCSI storage device. Please verify this on your
hardware" or "Section still describes how to update kernel modules using a LS-120 SuperDisk;
please verify that we still need to tell readers about this obsolete hardware."

4. What is Virtualization?
Virtualization is a broad computing term for running software, usually operating systems, concurrently
and isolated from other programs on one system. Most existing implementations of virtualization use a
hypervisor, a software layer that controls hardware and provides guest operating systems with access
to underlying hardware devices. The hypervisor allows multiple operating systems to run on the same
physical system by offering virtualized hardware to the guest operating system.

5. Types of Virtualization

5.1. Full Virtualization
Red Hat Enterprise Linux contains virtualization packages and tools which provide system
administrators with the means to run fully virtualized, unmodified, operating system guests on Red Hat
Enterprise Linux. This provides companies with the ability to consolidate older systems onto newer,
more efficient hardware. This reduces physical space and operating costs involved with powering and
cooling older, less efficient systems. Full virtualization incurs worse I/O performance than native, also
known as bare-metal, installations of operating systems.

5.2. Para-Virtualization
Para-virtualization is a virtualization technique which involves running modified versions of operating
systems. The para-virtualized operating system is modified to be aware that it is being virtualized,
offering an increased ability for optimization as the guest is more aware of its environment.
Performance is generally very close to running bare-metal, non-virtualized operating systems.

5.3. Para-virtualized drivers
These two techniques, para-virtualization and full virtualization, can be combined to allow unmodified
operating systems to receive near native I/O performance by using para-virtualized drivers on
fully virtualized operating systems. This guide covers installation and configuration of the Red Hat
Enterprise Linux para-virtualized drivers package for fully virtualized Microsoft Windows® guests.

The para-virtualized drivers package contains storage and network device drivers for fully virtualized
Microsoft Windows® guests. The drivers provide Microsoft Windows® guests running on Red Hat
Enterprise Linux with enhanced disk and network I/O performance.

6. How CIOs should think about virtualization
by Lee Congdon, Chief Information Officer, Red Hat, Inc.

You may already be heavily invested in the rapidly emerging technology of virtualization. If so,
consider some of the ideas below for further exploiting the technology. If not, now is the right time to
get started.

Virtualization provides a set of tools for increasing flexibility and lowering costs, things that are
important in every enterprise and Information Technology organization. Virtualization solutions are
becoming increasingly available and rich in features.

Preface

xiv

Since virtualization can provide significant benefits to your organization in multiple areas, you should
be establishing pilots, developing expertise and putting virtualization technology to work now.

Virtualization for Innovation
In essence, virtualization increases flexibility by decoupling an operating system and the services
and applications supported by that system from a specific physical hardware platform. It allows the
establishment of multiple virtual environments on a shared hardware platform.

Organizations looking to innovate find that the ability to create new systems and services without
installing additional hardware (and to quickly tear down those systems and services when they are no
longer needed) can be a significant boost to innovation.

Among possible approaches are the rapid establishment of development systems for the creation of
custom software, the ability to quickly set up test environments, the capability to provision alternate
software solutions and compare them without extensive hardware investments, support for rapid
prototyping and agile development environments, and the ability to quickly establish new production
services on demand.

These environments can be created in house or provisioned externally, as with Amazon’s EC2
offering. Since the cost to create a new virtual environment can be very low, and can take advantage
of existing hardware, innovation can be facilitated and accelerated with minimal investment.

Virtualization can also excel at supporting innovation through the use of virtual environments for
training and learning. These services are ideal applications for virtualization technology. A student
can start course work with a known, standard system environment. Class work can be isolated from
the production network. Learners can establish unique software environments without demanding
exclusive use of hardware resources.

As the capabilities of virtual environments continue to grow, we’re likely to see increasing use
of virtualization to enable portable environments tailored to the needs of a specific user. These
environments can be moved dynamically to an accessible or local processing environment, regardless
of where the user is located. The user’s virtual environments can be stored on the network or carried
on a portable memory device.

A related concept is the Appliance Operating System, an application package oriented operating
system designed to run in a virtual environment. The package approach can yield lower development
and support costs as well as insuring the application runs in a known, secure environment. An
Appliance Operating System solution provides benefits to both application developers and the
consumers of those applications.

How these applications of virtualization technology apply in your enterprise will vary. If you are already
using the technology in more than one of the areas noted above, consider an additional investment
in a solution requiring rapid development. If you haven’t started with virtualization, start with a training
and learning implementation to develop skills, then move on to application development and testing.
Enterprises with broader experience in virtualization should consider implementing portable virtual
environments or application appliances.

Virtualization for Cost Savings
Virtualization can also be used to lower costs. One obvious benefit comes from the consolidation
of servers into a smaller set of more powerful hardware platforms running a collection of virtual
environments. Not only can costs be reduced by reducing the amount of hardware and reducing the
amount of unused capacity, but application performance can actually be improved since the virtual
guests execute on more powerful hardware.

How CIOs should think about virtualization

xv

Further benefits include the ability to add hardware capacity in a non-disruptive manner and to
dynamically migrate workloads to available resources.

Depending on the needs of your organization, it may be possible to create a virtual environment for
disaster recovery. Introducing virtualization can significantly reduce the need to replicate identical
hardware environments and can also enable testing of disaster scenarios at lower cost.

Virtualization provides an excellent solution for addressing peak or seasonal workloads. If you
have complementary workloads in your organization, you can dynamically allocate resources to the
applications which are currently experiencing the greatest demand. If you have peak workloads that
you are currently provisioning inside your organization, you may be able to buy capacity on demand
externally and implement it efficiently using virtual technology.

Cost savings from server consolidation can be compelling. If you are not exploiting virtualization for
this purpose, you should start a program now. As you gain experience with virtualization, explore the
benefits of workload balancing and virtualized disaster recovery environments.

Virtualization as a Standard Solution
Regardless of the specific needs of your enterprise, you should be investigating virtualization as part
of your system and application portfolio as the technology is likely to become pervasive. We expect
operating system vendors to include virtualization as a standard component, hardware vendors to
build virtual capabilities into their platforms, and virtualization vendors to expand the scope of their
offerings.

If you don’t have plans to incorporate virtualization in your solution architecture, now is a very good
time to identify a pilot project, allocate some underutilized hardware platforms, and develop expertise
with this flexible and cost-effective technology. Then, extend your target architectures to incorporate
virtual solutions. Although substantial benefits are available from virtualizing existing services,
building new applications with an integrated virtualization strategy can yield further benefits in both
manageability and availability.

You can learn more about Red Hat’s virtualization solutions at http://www.redhat.com/products/

http://www.redhat.com/products/

xvi

Part I. Requirements and
Limitations for Virtualization

with Red Hat Enterprise Linux

System requirements, support
restrictions and limitations

These chapters outline the system requirements, support restrictions, and limitations of virtualization
on Red Hat Enterprise Linux.

Chapter 1.

3

System requirements
This chapter lists system requirements for successfully running virtualization with Red Hat Enterprise
Linux. Virtualization is available for Red Hat Enterprise Linux 5 Server.

The requirements for virtualization vary depending on the type of hypervisor. The Kernel-based Virtual
Machine (KVM) and Xen hypervisors are provided with Red Hat Enterprise Linux 5. Both the KVM and
Xen hypervisors support Full virtualization. The Xen hypervisor also supports Para-virtualization.

For information on installing the virtualization packages, read Chapter 6, Installing the virtualization
packages.

Minimum system requirements
• 6GB free disk space

• 2GB of RAM.

Recommended system requirements
• 6GB plus the required disk space recommended by the guest operating system per guest. For most

operating systems more than 6GB of disk space is recommended.

• One processor core or hyper-thread for each virtualized CPU and one for the hypervisor.

• 2GB of RAM plus additional RAM for virtualized guests.

KVM overcommit

KVM can overcommit physical resources for virtualized guests. Overcommiting resources means
the total virtualized RAM and processor cores used by the guests can exceed the physical RAM
and processor cores on the host. For information on safely overcommitting resources with KVM
refer to Section 32.4, “Overcommitting Resources”.

Xen para-virtualization requirements
Para-virtualized guests require a Red Hat Enterprise Linux 5 installation tree available over the
network using the NFS, FTP or HTTP protocols.

Xen full virtualization requirements
Full virtualization with the Xen Hypervisor requires:

• an Intel processor with the Intel VT extensions, or

• an AMD processor with the AMD-V extensions, or

• an Intel Itanium processor.

Refer to Section 32.6, “Verifying virtualization extensions” to determine if your processor has the
virtualization extensions.

KVM requirements
The KVM hypervisor requires:

Chapter 1. System requirements

4

• an Intel processor with the Intel VT and the Intel 64 extensions, or

• an AMD processor with the AMD-V and the AMD64 extensions.

Refer to Section 32.6, “Verifying virtualization extensions” to determine if your processor has the
virtualization extensions.

Storage support
The supported guest storage methods are:

• Files on local storage

• Physical disk partitions

• Locally connected physical LUNs

• LVM partitions

• iSCSI and Fibre Channel based LUNs

File-based guest storage

File-based guest images are stored in the /var/lib/libvirt/images/ directory by default. If
you use a different directory you must label the new directory according to SELinux policy. Refer
to Section 18.2, “SELinux and virtualization” for details.

Chapter 2.

5

Xen restrictions and support
Red Hat Enterprise Linux 5 supports various architecture combinations for hosts and virtualized
guests. All architectures have processor and memory limitations. Refer to the following URLs for the
processor and memory amount limitations for Red Hat Enterprise Linux:

• For host systems: http://www.redhat.com/rhel/compare/

• For hypervisors: http://www.redhat.com/rhel/virtualization/compare/

The following URL shows a complete chart of supported operating systems and host and guest
combinations:

• http://www.redhat.com/rhel/server/advanced/virt.html

Note

To utilize para-virtualization on Red Hat Enterprise Linux 5, your processor must have the
Physical Address Extension (PAE) instruction set.

Itanium® support

Virtualization with the Xen hypervisor on the Intel Itanium architecture requires the guest firmware
image package, refer to Installing the Xen hypervisor with yum for more information.

http://www.redhat.com/rhel/compare/
http://www.redhat.com/rhel/virtualization/compare/
http://www.redhat.com/rhel/server/advanced/virt.html

6

Chapter 3.

7

KVM restrictions and support
The KVM hypervisor requires a processor with the Intel-VT or AMD-V virtualization extensions.

To verify whether your processor supports the virtualization extensions and for information on
enabling the virtualization extensions if they are disabled, refer to Section 32.6, “Verifying virtualization
extensions”.

The following URLs explain the processor and memory amount limitations for Red Hat Enterprise
Linux:

• For host systems: http://www.redhat.com/rhel/compare/

• For hypervisors: http://www.redhat.com/rhel/virtualization/compare/

The following URL shows a complete chart of supported operating systems and host and guest
combinations:

• http://www.redhat.com/rhel/server/advanced/virt.html

http://www.redhat.com/rhel/compare/
http://www.redhat.com/rhel/virtualization/compare/
http://www.redhat.com/rhel/server/advanced/virt.html

8

Chapter 4.

9

Hyper-V restrictions and support
Certification of guests running under the Microsoft Hyper-V server is conducted by Microsoft. Red Hat
Enterprise Linux 5 is fully certified to run under the Microsoft Hyper-V server.

Note

To avoid timing errors when running Red Hat Enterprise Linux 5 under the Microsoft Hyper-V
server, use the divider=10 option in the grub.conf file.

10

Chapter 5.

11

Virtualization limitations
This chapter covers additional limitations of the virtualization packages in Red Hat Enterprise Linux.

5.1. General limitations for virtualization

Converting between hypervisors
Presently, there is no support for converting Xen-based guests to KVM or KVM-based guests to
Xen. Guests can only be supported on the hypervisor type on which they were created. However, at
the time of writing, a tool is in development which may be released with future versions of Red Hat
Enterprise Linux.

Other limitations
For other details affecting virtualization, refer to the Red Hat Enterprise Linux Release Notes at http://
docs.redhat.com1 for your version. The Release Notes cover the present new features, known issues
and limitations as they are updated or discovered.

Test before deployment
You should test for the maximum anticipated system and virtualized network load before deploying
heavy I/O applications. Load testing and planning are important as virtualization performance can
suffer due to high I/O usage.

5.2. KVM limitations
The following limitations apply to the KVM hypervisor:

Constant TSC bit
Systems without a Constant Time Stamp Counter require additional configuration. Refer to
Chapter 16, KVM guest timing management for details on determining whether you have a
Constant Time Stamp Counter and configuration steps for fixing any related issues.

Memory overcommit
KVM supports memory overcommit and can store the memory of guests in swap. A guest will run
slower if it is swapped frequently. When Kernel SamePage Merging (KSM) is used, make sure that
the swap size is equivalent to the size of the overcommit ratio.

CPU overcommit
It is not supported to have more than 10 virtual CPUs per physical processor core. Any number of
overcommitted virtual CPUs above the number of physical processor cores may cause problems
with certain virtualized guests.

Overcommitting CPUs has some risk and can lead to instability. Refer to Section 32.4,
“Overcommitting Resources” for tips and recommendations on overcommitting CPUs.

Virtualized SCSI devices
SCSI emulation is presently not supported. Virtualized SCSI devices are disabled in KVM.

1 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

Chapter 5. Virtualization limitations

12

Virtualized IDE devices
KVM is limited to a maximum of four virtualized (emulated) IDE devices per guest.

Para-virtualized devices
Para-virtualized devices, which use the virtio drivers, are PCI devices. Presently, guests are
limited to a maximum of 32 PCI devices. Some PCI devices are critical for the guest to run and
these devices cannot be removed. The default, required devices are:

• the host bridge,

• the ISA bridge and usb bridge (The usb and isa bridges are the same device),

• the graphics card (using either the Cirrus or qxl driver), and

• the memory balloon device.

Out of the 32 available PCI devices for a guest 4 are not removable. This means there are only
28 PCI slots available for additional devices per guest. Every para-virtualized network or block
device uses one slot. Each guest can use up to 28 additional devices made up of any combination
of para-virtualized network, para-virtualized disk devices, or other PCI devices using VT-d.

Migration limitations
Live migration is only possible with CPUs from the same vendor (that is, Intel to Intel or AMD to
AMD only).

The No eXecution (NX) bit must be set to on or off for both CPUs for live migration.

Storage limitations
The host should not use disk labels to identify file systems in the fstab file, the initrd file or
used by the kernel command line. If less privileged users, especially virtualized guests, have write
access to whole partitions or LVM volumes the host system could be compromised.

Guests should not be given write access to whole disks or block devices (for example, /dev/
sdb). Virtualized guests with access to block devices may be able to access other block devices
on the system or modify volume labels which can be used to compromise the host system. Use
partitions (for example, /dev/sdb1) or LVM volumes to prevent this issue.

5.3. Xen limitations

Note

All limitations in this chapter are limitations for Red Hat Enterprise Linux 5.8 except where noted.
Older versions may have fewer limitations.

Xen host (dom0) limitations
• A limit of 254 para-virtualized block devices per host. The total number of block devices (using the

tap:aio driver) attached to virtualized guests cannot exceed 254 devices.

Xen limitations

13

Working around the para-virtualized device limit

There are two methods for working around the para-virtualized device limit: using phy devices
(devices using the physical access mode) or using LVM on the guest.

A host has no limit to the number of phy devices it can have if it has sufficient resources.

LVM, or similar logical partitioning tool, can be used on a block device to create additional logical
partitions on a single para-virtualized block device.

Xen Para-virtualization limitations
• For x86 guests, a maximum of 16GB memory per guest.

• For x86_64 guests, a maximum of 168GB memory per guest.

• A maximum of 254 devices per virtualized guest.

• A maximum of 15 network devices per virtualized guest.

Xen full virtualization limitations
• For x86 guests, a maximum of 16GB memory per guest.

• A maximum of four virtualized (emulated) IDE devices per guest.

Devices using the para-virtualized drivers for fully-virtualized guests do not have this limitation.

• Virtualized (emulated) IDE devices are limited by the total number of loopback devices supported by
the system. The default number of available loopback devices on Red Hat Enterprise Linux 5.8 is
8. That is, by default, all virtualized guests on the system can each have no more than 8 virtualized
(emulated) IDE devices.

For more information on loopback devices, refer to the Red Hat KnowledgeBase, article
DOC-17222.

Using more than 8 loopback devices

By default, Red Hat Enterprise Linux limits the number of loopback devices available. This
number can be raised by modifying the kernel limit.

In the /etc/modprobe.conf add the following line:

options loop max_loop=64

Reboot the machine or run the following commands to update the kernel with this new limit:

rmmod loop
modprobe loop

http://kbase.redhat.com/faq/docs/DOC-1722
http://kbase.redhat.com/faq/docs/DOC-1722

Chapter 5. Virtualization limitations

14

• A limit of 254 para-virtualized block devices per host. The total number of block devices (using the
tap:aio driver) attached to virtualized guests cannot exceed 254 devices.

• A maximum of 254 block devices using the para-virtualized drivers per virtualized guest.

• A maximum of 15 network devices per virtualized guest.

• A maximum of 15 virtualized SCSI devices per virtualized guest.

PCI passthrough limitations
• PCI passthrough (attaching PCI devices to guests) is presently only supported on the following

architectures:

• 32 bit (x86) systems.

• Intel 64 systems.

• Intel Itanium 2 systems.

5.4. Application limitations
There are aspects of virtualization which make virtualization unsuitable for certain types of
applications.

Applications with high I/O throughput requirements should use the para-virtualized drivers for fully
virtualized guests. Without the para-virtualized drivers certain applications may be unstable under
heavy I/O loads.

The following applications should be avoided for their high I/O requirement reasons:

• kdump server

• netdump server

You should carefully evaluate database applications before running them on a virtualized guest.
Databases generally use network and storage I/O devices intensively. These applications may not be
suitable for a fully virtualized environment. Consider para-virtualization or para-virtualized drivers in
these cases for increased I/O performance.

Other applications and tools which heavily utilize I/O or require real-time performance should be
evaluated carefully. Using full virtualization with the para-virtualized drivers or para-virtualization
results in better performance with I/O intensive applications. Applications still suffer a small
performance loss from running in virtualized environments. The performance benefits of virtualization
through consolidating to newer and faster hardware should be evaluated against the potential
application performance issues associated with using fully virtualized hardware.

Part II. Installation

Virtualization installation topics
These chapters describe setting up the host and installing virtualized guests with Red Hat Enterprise
Linux. It is recommended to read these chapters carefully to ensure successful installation of
virtualized guest operating systems.

Chapter 6.

17

Installing the virtualization packages
Before you can use virtualization, the virtualization packages must be installed on Red Hat Enterprise
Linux. Virtualization packages can be installed either during the installation sequence or after
installation using the yum command and the Red Hat Network (RHN).

You can install both the KVM and Xen hypervisors on a single system. The Xen hypervisor uses the
kernel-xen package and the KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the
kvm kernel module. Xen and KVM each use a different kernel and only one hypervisor can be active at
any given time. Red Hat recommends to only install one hypervisor, the hypervisor you want to use for
virtualization.

To change hypervisor from Xen to KVM or KVM to Xen refer to Section 32.2, “Changing between the
KVM and Xen hypervisors”.

6.1. Installing Xen with a new Red Hat Enterprise Linux
installation
This section covers installing virtualization tools and Xen packages as part of a fresh Red Hat
Enterprise Linux installation.

Need help installing?

The Installation Guide (available from redhat.com1) covers installing Red Hat Enterprise Linux in
detail.

1. Start an interactive Red Hat Enterprise Linux installation from the Red Hat Enterprise Linux
Installation CD-ROM, DVD or PXE.

2. You must enter a valid installation number when prompted to receive access to the virtualization
and other Advanced Platform packages. Installation numbers can be obtained from Red Hat
Customer Service.

3. Complete all steps until you see the package selection step.

1 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

Chapter 6. Installing the virtualization packages

18

Select the Virtualization package group and the Customize Now radio button.

4. Select the Virtualization package group. The Virtualization package group selects the Xen
hypervisor, virt-manager, libvirt and virt-viewer and all dependencies for installation.

Installing Xen with a new Red Hat Enterprise Linux installation

19

5. Customize the packages (if required)
Customize the Virtualization group if you require other virtualization packages.

Chapter 6. Installing the virtualization packages

20

Press the Close button then the Forward button to continue the installation.

Note

You require a valid RHN virtualization entitlement to receive updates for the virtualization
packages.

Installing Xen packages with Kickstart files
This section describes how to use a Kickstart file to install Red Hat Enterprise Linux with the Xen
hypervisor packages. Kickstart files allow for large, automated installations without a user manually

Installing Xen packages on an existing Red Hat Enterprise Linux system

21

installing each individual system. The steps in this section will assist you in creating and using a
Kickstart file to install Red Hat Enterprise Linux with the virtualization packages.

In the %packages section of your Kickstart file, append the following package group:

%packages
@xen

For Intel Itanium systems

Fully virtualized guests on the Itanium® architecture require the guest firmware image package
(xen-ia64-guest-firmware). Append the following package to your kickstart file:

xen-ia64-guest-firmware

More information on Kickstart files can be found on Red Hat's website, redhat.com2, in the Installation
Guide.

6.2. Installing Xen packages on an existing Red Hat
Enterprise Linux system
The section describes the steps necessary to install the virtualization packages on a working Red Hat
Enterprise Linux system.

Adding packages to your list of Red Hat Network entitlements
This section describes how to enable Red Hat Network (RHN) entitlements for the virtualization
packages. You need these entitlements enabled to install and update the virtualization packages on
Red Hat Enterprise Linux. You require a valid Red Hat Network account in order to install virtualization
packages on Red Hat Enterprise Linux.

In addition, your machines must be registered with RHN. To register an unregistered installation of
Red Hat Enterprise Linux, run the rhn_register command and follow the prompts.

If you do not have a valid Red Hat subscription, visit the Red Hat online store3.

Procedure 6.1. Adding the Virtualization entitlement with RHN
1. Log in to RHN4 using your RHN username and password.

2. Select the systems you want to install virtualization on.

3. In the System Properties section the present systems entitlements are listed next to the
Entitlements header. Use the (Edit These Properties) link to change your entitlements.

4. Select the Virtualization checkbox.

Your system is now entitled to receive the virtualization packages. The next section covers installing
these packages.

2 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
3 https://www.redhat.com/wapps/store/catalog.html

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
https://www.redhat.com/wapps/store/catalog.html
https://rhn.redhat.com/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
https://www.redhat.com/wapps/store/catalog.html

Chapter 6. Installing the virtualization packages

22

Installing the Xen hypervisor with yum
To use virtualization on Red Hat Enterprise Linux you need the xen and kernel-xen packages.
The xen package contains the hypervisor and basic virtualization tools. The kernel-xen package
contains a modified Linux kernel which runs as a virtual machine guest on the hypervisor.

To install the xen and kernel-xen packages, run:

yum install xen kernel-xen

Fully virtualized guests on the Itanium® architecture require the guest firmware image package (xen-
ia64-guest-firmware) from the supplementary installation DVD. This package can also be can be
installed from RHN with the yum command:

yum install xen-ia64-guest-firmware

It is advised to install additional virtualization packages for management and configuration.
Recommended virtualization packages: lists the recommended packages.

Recommended virtualization packages:
python-virtinst

Provides the virt-install command for creating virtual machines.

libvirt
libvirt is an API library for interacting with hypervisors. libvirt uses the xm virtualization
framework and the virsh command line tool to manage and control virtual machines.

libvirt-python
The libvirt-python package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager
virt-manager, also known as Virtual Machine Manager, provides a graphical tool for
administering virtual machines. It uses libvirt library as the management API.

Install the other recommended virtualization packages:

yum install virt-manager libvirt libvirt-python python-virtinst

6.3. Installing KVM with a new Red Hat Enterprise Linux
installation
This section covers installing virtualization tools and KVM package as part of a fresh Red Hat
Enterprise Linux installation.

Installing KVM with a new Red Hat Enterprise Linux installation

23

Need help installing?

The Installation Guide (available from redhat.com5) covers installing Red Hat Enterprise Linux in
detail.

You need a valid installation number

You cannot select the virtualization packages during the installation without a valid installation
number.

1. Start an interactive Red Hat Enterprise Linux installation from the Red Hat Enterprise Linux
Installation CD-ROM, DVD or PXE.

2. You must enter a valid installation number when prompted to receive access to the virtualization
and other Advanced Platform packages.

3. Complete all steps up to the package selection step.

5 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/index.html

Chapter 6. Installing the virtualization packages

24

Select the Virtualization package group and the Customize Now radio button.

4. Select the KVM package group. Deselect the Virtualization package group. This selects the KVM
hypervisor, virt-manager, libvirt and virt-viewer for installation.

Installing KVM with a new Red Hat Enterprise Linux installation

25

5. Customize the packages (if required)
Customize the Virtualization group if you require other virtualization packages.

Chapter 6. Installing the virtualization packages

26

Press the Close button then the Forward button to continue the installation.

Note

You require a valid RHN virtualization entitlement to receive updates for the virtualization
packages.

Installing KVM packages with Kickstart files
This section describes how to use a Kickstart file to install Red Hat Enterprise Linux with the KVM
hypervisor packages. Kickstart files allow for large, automated installations without a user manually

Installing KVM packages on an existing Red Hat Enterprise Linux system

27

installing each individual system. The steps in this section will assist you in creating and using a
Kickstart file to install Red Hat Enterprise Linux with the virtualization packages.

In the %packages section of your Kickstart file, append the following package group:

%packages
@kvm

More information on Kickstart files can be found on Red Hat's website, redhat.com6, in the Installation
Guide.

6.4. Installing KVM packages on an existing Red Hat
Enterprise Linux system
The section describes the steps for installing the KVM hypervisor on a working Red Hat Enterprise
Linux 5.4 or newer system.

Adding packages to your list of Red Hat Network entitlements
This section describes how to enable Red Hat Network (RHN) entitlements for the virtualization
packages. You need these entitlements enabled to install and update the virtualization packages on
Red Hat Enterprise Linux. You require a valid Red Hat Network account in order to install virtualization
packages on Red Hat Enterprise Linux.

In addition, your machines must be registered with RHN. To register an unregistered installation of
Red Hat Enterprise Linux, run the rhn_register command and follow the prompts.

If you do not have a valid Red Hat subscription, visit the Red Hat online store7.

Procedure 6.2. Adding the Virtualization entitlement with RHN
1. Log in to RHN8 using your RHN username and password.

2. Select the systems you want to install virtualization on.

3. In the System Properties section the present systems entitlements are listed next to the
Entitlements header. Use the (Edit These Properties) link to change your entitlements.

4. Select the Virtualization checkbox.

Your system is now entitled to receive the virtualization packages. The next section covers installing
these packages.

Installing the KVM hypervisor with yum
To use virtualization on Red Hat Enterprise Linux you require the kvm package. The kvm package
contains the KVM kernel module providing the KVM hypervisor on the default Red Hat Enterprise
Linux kernel.

To install the kvm package, run:

yum install kvm

6 http://www.redhat.com/docs/manuals/enterprise/
7 https://www.redhat.com/wapps/store/catalog.html

http://www.redhat.com/docs/manuals/enterprise/
https://www.redhat.com/wapps/store/catalog.html
https://rhn.redhat.com/
http://www.redhat.com/docs/manuals/enterprise/
https://www.redhat.com/wapps/store/catalog.html

Chapter 6. Installing the virtualization packages

28

Now, install additional virtualization management packages.

Recommended virtualization packages:
python-virtinst

Provides the virt-install command for creating virtual machines.

libvirt
libvirt is an API library for interacting with hypervisors. libvirt uses the xm virtualization
framework and the virsh command line tool to manage and control virtual machines.

libvirt-python
The libvirt-python package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager
virt-manager, also known as Virtual Machine Manager, provides a graphical tool for
administering virtual machines. It uses libvirt library as the management API.

Install the other recommended virtualization packages:

yum install virt-manager libvirt libvirt-python python-virtinst

Chapter 7.

29

Virtualized guest installation overview
After you have installed the virtualization packages on the host system you can create guest operating
systems. This chapter describes the general processes for installing guest operating systems on
virtual machines. You can create guests using the New button in virt-manager or use the command
line interface virt-install. Both methods are covered by this chapter.

Detailed installation instructions are available for specific versions of Red Hat Enterprise Linux, other
Linux distributions and Windows. Refer to Chapter 8, Guest operating system installation procedures
for those procedures.

7.1. Creating guests with virt-install
You can use the virt-install command to create virtualized guests from the command line.
virt-install is used either interactively or as part of a script to automate the creation of virtual
machines. Using virt-install with Kickstart files allows for unattended installation of virtual
machines.

The virt-install tool provides a number of options one can pass on the command line. To see a
complete list of options run:

$ virt-install --help

The virt-install man page also documents each command option and important variables.

qemu-img is a related command which may be used before virt-install to configure storage
options.

An important option is the --vnc option which opens a graphical window for the guest's installation.

Example 7.1. Using virt-install with KVM to create a Red Hat Enterprise Linux 3 guest
This example creates a Red Hat Enterprise Linux 3 guest, named rhel3support, from a CD-
ROM, with virtual networking and with a 5 GB file-based block device image. This example uses the
KVM hypervisor.

virt-install --accelerate --hvm --connect qemu:///system \
 --network network:default \
 --name rhel3support --ram=756\
 --file=/var/lib/libvirt/images/rhel3support.img \
 --file-size=6 --vnc --cdrom=/dev/sr0

Example 7.2. Using virt-install to create a fedora 11 guest

virt-install --name fedora11 --ram 512 --file=/var/lib/libvirt/images/fedora11.img \
 --file-size=3 --vnc --cdrom=/var/lib/libvirt/images/fedora11.iso

7.2. Creating guests with virt-manager
virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and
managing virtualized guests.

Chapter 7. Virtualized guest installation overview

30

Procedure 7.1. Creating a virtualized guest with virt-manager
1. Open virt-manager

Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Optional: Open a remote hypervisor
Open the File -> Add Connection. The dialog box below appears. Select a hypervisor and click
the Connect button:

3. Create a new guest
The virt-manager window allows you to create a new virtual machine. Click the New button to
create a new guest. This opens the wizard shown in the screenshot.

Creating guests with virt-manager

31

4. New guest wizard
The Create a new virtual machine window provides a summary of the information you must
provide in order to create a virtual machine:

Chapter 7. Virtualized guest installation overview

32

Review the information for your installation and click the Forward button.

Creating guests with virt-manager

33

5. Name the virtual machine
Provide a name for your virtualized guest. Punctuation and whitespace characters are not
permitted in versions before Red Hat Enterprise Linux 5.5. Red Hat Enterprise Linux 5.5 adds
support for '_', '.' and '-' characters.

Press Forward to continue.

Chapter 7. Virtualized guest installation overview

34

6. Choose virtualization method
The Choosing a virtualization method window appears. Choose between Para-virtualized or
Fully virtualized.

Full virtualization requires a system with Intel® VT or AMD-V processor. If the virtualization
extensions are not present the fully virtualized radio button or the Enable kernel/hardware
acceleration will not be selectable. The Para-virtualized option will be grayed out if kernel-
xen is not the kernel running presently.

If you connected to a KVM hypervisor only full virtualization is available.

Creating guests with virt-manager

35

Choose the virtualization type and click the Forward button.

7. Select the installation method
The Installation Method window asks for the type of installation you selected.

Chapter 7. Virtualized guest installation overview

36

Guests can be installed using one of the following methods:

Local media installation
This method uses a CD-ROM or DVD or an image of an installation CD-ROM or DVD (an
.iso file).

Network installation tree
This method uses a mirrored Red Hat Enterprise Linux installation tree to install guests. The
installation tree must be accessible using one of the following network protocols: HTTP, FTP
or NFS.

The network services and files can be hosted using network services on the host or another
mirror.

Network boot
This method uses a Preboot eXecution Environment (PXE) server to install the guest. Setting
up a PXE server is covered in the Red Hat Enterprise Linux Deployment Guide. Using this
method requires a guest with a routable IP address or shared network device. Refer to
Chapter 10, Network Configuration for information on the required networking configuration
for PXE installation.

Creating guests with virt-manager

37

Set the OS type and OS variant.

Choose the installation method and click Forward to proceed.

Chapter 7. Virtualized guest installation overview

38

Para-virtualized guest installation

Para-virtualized installation must be installed with a network installation tree. The installation
tree must be accessible using one of the following network protocols: HTTP, FTP or NFS. The
installation media URL must contain a Red Hat Enterprise Linux installation tree. This tree is
hosted using NFS, FTP or HTTP.

8. Installation media selection
This window is dependent on what was selected in the previous step.

a. ISO image or physical media installation
If Local install media was selected in the previous step this screen is called Install Media.

Select the location of an ISO image or select a DVD or CD-ROM from the dropdown list.

Creating guests with virt-manager

39

Click the Forward button to proceed.

b. Network install tree installation
If Network install tree was selected in the previous step this screen is called Installation
Source.

Chapter 7. Virtualized guest installation overview

40

Network installation requires the address of a mirror of a Linux installation tree using NFS,
FTP or HTTP. Optionally, a kickstart file can be specified to automated the installation. Kernel
parameters can also be specified if required.

Click the Forward button to proceed.

Creating guests with virt-manager

41

c. Network boot (PXE)
PXE installation does not have an additional step.

9. Storage setup
The Storage window displays. Choose a disk partition, LUN or create a file-based image for the
guest storage.

All image files are stored in the /var/lib/libvirt/images/ directory by default. In the
default configuration, other directory locations for file-based images are prohibited by SELinux. If
you use a different directory you must label the new directory according to SELinux policy. Refer
to Section 18.2, “SELinux and virtualization” for details.

Your guest storage image should be larger than the size of the installation, any additional
packages and applications, and the size of the guests swap file. The installation process will
choose the size of the guest's swap based on size of the RAM allocated to the guest.

Allocate extra space if the guest needs additional space for applications or other data. For
example, web servers require additional space for log files.

Chapter 7. Virtualized guest installation overview

42

Choose the appropriate size for the guest on your selected storage type and click the Forward
button.

Creating guests with virt-manager

43

Note

It is recommend that you use the default directory for virtual machine images, /var/
lib/libvirt/images/. If you are using a different location (such as /images/ in this
example) make sure it is added to your SELinux policy and relabeled before you continue
with the installation (later in the document you will find information on how to modify your
SELinux policy).

10. Network setup
Select either Virtual network or Shared physical device.

The virtual network option uses Network Address Translation (NAT) to share the default network
device with the virtualized guest. Use the virtual network option for wireless networks.

The shared physical device option uses a network bond to give the virtualized guest full access to
a network device.

Chapter 7. Virtualized guest installation overview

44

Press Forward to continue.

11. Memory and CPU allocation
The Memory and CPU Allocation window displays. Choose appropriate values for the virtualized
CPUs and RAM allocation. These values affect the host's and guest's performance.

Creating guests with virt-manager

45

Guests require sufficient physical memory (RAM) to run efficiently and effectively. Choose a
memory value which suits your guest operating system and application requirements. Most
operating system require at least 512MB of RAM to work responsively. Remember, guests use
physical RAM. Running too many guests or leaving insufficient memory for the host system
results in significant usage of virtual memory. Virtual memory is significantly slower causing
degraded system performance and responsiveness. Ensure to allocate sufficient memory for all
guests and the host to operate effectively.

Assign sufficient virtual CPUs for the virtualized guest. If the guest runs a multithreaded
application, assign the number of virtualized CPUs the guest will require to run efficiently. Do
not assign more virtual CPUs than there are physical processors (or hyper-threads) available on
the host system. It is possible to over allocate virtual processors, however, over allocating has
a significant, negative affect on guest and host performance due to processor context switching
overheads.

Chapter 7. Virtualized guest installation overview

46

Press Forward to continue.

12. Verify and start guest installation
The Finish Virtual Machine Creation window presents a summary of all configuration
information you entered. Review the information presented and use the Back button to make

Creating guests with virt-manager

47

changes, if necessary. Once you are satisfied click the Finish button and to start the installation
process.

A VNC window opens showing the start of the guest operating system installation process.

Chapter 7. Virtualized guest installation overview

48

This concludes the general process for creating guests with virt-manager. Chapter 8, Guest
operating system installation procedures contains step-by-step instructions to installing a variety of
common operating systems.

7.3. Installing guests with PXE
This section covers the steps required to install guests with PXE. PXE guest installation requires a
shared network device, also known as a network bridge. The procedures below covers creating a
bridge and the steps required to utilize the bridge for PXE installation.

1. Create a new bridge
a. Create a new network script file in the /etc/sysconfig/network-scripts/ directory.

This example creates a file named ifcfg-installation which makes a bridge named
installation.

cd /etc/sysconfig/network-scripts/
vim ifcfg-installation
DEVICE=installation
TYPE=Bridge
BOOTPROTO=dhcp
ONBOOT=yes

Warning

The line, TYPE=Bridge, is case-sensitive. It must have uppercase 'B' and lower case
'ridge'.

b. Start the new bridge by restarting the network service. The ifup installation command
can start the individual bridge but it is safer to test the entire network restarts properly.

service network restart

c. There are no interfaces added to the new bridge yet. Use the brctl show command to view
details about network bridges on the system.

brctl show
bridge name bridge id STP enabled interfaces
installation 8000.000000000000 no
virbr0 8000.000000000000 yes

The virbr0 bridge is the default bridge used by libvirt for Network Address Translation
(NAT) on the default Ethernet device.

2. Add an interface to the new bridge
Edit the configuration file for the interface. Add the BRIDGE parameter to the configuration file with
the name of the bridge created in the previous steps.

Intel Corporation Gigabit Network Connection
DEVICE=eth1
BRIDGE=installation
BOOTPROTO=dhcp

Installing guests with PXE

49

HWADDR=00:13:20:F7:6E:8E
ONBOOT=yes

After editing the configuration file, restart networking or reboot.

service network restart

Verify the interface is attached with the brctl show command:

brctl show
bridge name bridge id STP enabled interfaces
installation 8000.001320f76e8e no eth1
virbr0 8000.000000000000 yes

3. Security configuration
Configure iptables to allow all traffic to be forwarded across the bridge.

iptables -I FORWARD -m physdev --physdev-is-bridged -j ACCEPT
service iptables save
service iptables restart

Disable iptables on bridges

Alternatively, prevent bridged traffic from being processed by iptables rules. In /etc/
sysctl.conf append the following lines:

net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

Reload the kernel parameters configured with sysctl.

sysctl -p /etc/sysctl.conf

4. Restart libvirt before the installation
Restart the libvirt daemon.

service libvirtd reload

The bridge is configured, you can now begin an installation.

PXE installation with virt-install
For virt-install append the --network=bridge:installation installation parameter where
installation is the name of your bridge. For PXE installations use the --pxe parameter.

Example 7.3. PXE installation with virt-install

virt-install --accelerate --hvm --connect qemu:///system \

Chapter 7. Virtualized guest installation overview

50

 --network=bridge:installation --pxe\
 --name EL10 --ram=756 \
 --vcpus=4
 --os-type=linux --os-variant=rhel5
 --file=/var/lib/libvirt/images/EL10.img \

PXE installation with virt-manager
The steps below are the steps that vary from the standard virt-manager installation procedures. For
the standard installations refer to Chapter 8, Guest operating system installation procedures.

1. Select PXE
Select PXE as the installation method.

Installing guests with PXE

51

2. Select the bridge
Select Shared physical device and select the bridge created in the previous procedure.

Chapter 7. Virtualized guest installation overview

52

3. Start the installation
The installation is ready to start.

Installing guests with PXE

53

A DHCP request is sent and if a valid PXE server is found the guest installation processes will start.

54

Chapter 8.

55

Guest operating system installation
procedures
This chapter covers how to install various guest operating systems in a virtualized environment on
Red Hat Enterprise Linux. To understand the basic processes, refer to Chapter 7, Virtualized guest
installation overview.

Important

When installing a Red Hat Enterprise Linux guest, the installer will ask to perform an integrity
check on your installation source (CD/DVD media, or ISO file). If you select to perform the check,
once the media is tested and the installation continues, you may encounter a message that
states: The Red Hat Enterprise Linux Server CD was not found in any of your CDROM
drives. Please insert the Red Hat Enterprise Linux Server CD and press OK to retry.

This behavior is intentional, provided as a convenience to make sure media is ejected in case a
CD install (requiring multiple discs/images) is being performed as opposed to a DVD install.

To proceed past this message, make sure you either insert the next CD, or edit the guest's
XML file specifying the next ISO file (or re-insert the DVD media). Next, run virsh update-
device Guest1 ~/Guest1.xml (substituting your guest's name and XML file), and select OK
to continue past this step.

8.1. Installing Red Hat Enterprise Linux 5 as a para-
virtualized guest
This section describes how to install Red Hat Enterprise Linux 5 as a para-virtualized guest. Para-
virtualization is a faster than full virtualization and supports all of the advantages of full virtualization.
Para-virtualization requires a special, supported kernel, the kernel-xen kernel.

Important note on para-virtualization

Para-virtualization only works with the Xen hypervisor. Para-virtualization does not work with the
KVM hypervisor.

Ensure you have root access before starting the installation.

This method installs Red Hat Enterprise Linux from a remote server. The installation instructions
presented in this section are similar to installing from the minimal installation live CD-ROM.

Create para-virtualized Red Hat Enterprise Linux 5 guests using virt-manager or virt-install. For
instructions on virt-manager, refer to the procedure in Section 7.2, “Creating guests with virt-
manager”.

Create a para-virtualized guest with the command line based virt-install tool. The --vnc
option shows the graphical installation. The name of the guest in the example is rhel5PV, the disk

Chapter 8. Guest operating system installation procedures

56

image file is rhel5PV.dsk and a local mirror of the Red Hat Enterprise Linux 5 installation tree is
ftp://10.1.1.1/trees/RHEL5-B2-Server-i386/. Replace those values with values accurate
for your system and network.

virt-install -n rhel5PV -r 500 \
-f /var/lib/libvirt/images/rhel5PV.dsk -s 3 --vnc -p \
-l ftp://10.1.1.1/trees/RHEL5-B2-Server-i386/

Automating installation

Red Hat Enterprise Linux can be installed without a graphical interface or manual input. Use
Kickstart files to automate the installation process.

Using either method opens this window, displaying the initial boot phases of your guest:

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

57

After your guest has completed its initial boot, the standard installation process for Red Hat Enterprise
Linux starts. For most systems the default answers are acceptable.

Procedure 8.1. Para-virtualized Red Hat Enterprise Linux guest installation procedure
1. Select the language and click OK.

Chapter 8. Guest operating system installation procedures

58

2. Select the keyboard layout and click OK.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

59

3. Assign the guest's network address. Choose to use DHCP (as shown below) or a static IP
address:

Chapter 8. Guest operating system installation procedures

60

4. If you select DHCP the installation process will now attempt to acquire an IP address:

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

61

5. If you chose a static IP address for your guest this prompt appears. Enter the details on the
guest's networking configuration:

a. Enter a valid IP address. Ensure the IP address you enter can reach the server with the
installation tree.

b. Enter a valid Subnet mask, default gateway and name server address.

Chapter 8. Guest operating system installation procedures

62

Select the language and click OK.

6. This is an example of a static IP address configuration:

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

63

7. The installation process now retrieves the files it needs from the server:

Chapter 8. Guest operating system installation procedures

64

Once the initial steps are complete the graphical installation process starts.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

65

If you are installing a Beta or early release distribution confirm that you want to install the operating
system. Click Install Anyway, and then click OK:

Chapter 8. Guest operating system installation procedures

66

Procedure 8.2. The graphical installation process
1. Enter a valid registration code. If you have a valid RHN subscription key please enter in the

Installation Number field:

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

67

Chapter 8. Guest operating system installation procedures

68

Note

If you skip the registration step, confirm your Red Hat Network account details after the
installation with the rhn_register command. The rhn_register command requires root
access.

2. The installation prompts you to confirm erasure of all data on the storage you selected for the
installation:

Click Yes to continue.

3. Review the storage configuration and partition layout. You can chose to select the advanced
storage configuration if you want to use iSCSI for the guest's storage.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

69

Make your selections then click Forward.

4. Confirm the selected storage for the installation.

Chapter 8. Guest operating system installation procedures

70

Click Yes to continue.

5. Configure networking and hostname settings. These settings are populated with the data entered
earlier in the installation process. Change these settings if necessary.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

71

Click OK to continue.

6. Select the appropriate time zone for your environment.

Chapter 8. Guest operating system installation procedures

72

7. Enter the root password for the guest.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

73

Click Forward to continue.

8. Select the software packages to install. Select the Customize Now button. You must install
the kernel-xen package in the System directory. The kernel-xen package is required for para-
virtualization.

Chapter 8. Guest operating system installation procedures

74

Click Forward.

9. Dependencies and space requirements are calculated.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

75

10. After the installation dependencies and space requirements have been verified click Forward to
start the actual installation.

Chapter 8. Guest operating system installation procedures

76

11. All of the selected software packages are installed automatically.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

77

12. After the installation has finished reboot your guest:

Chapter 8. Guest operating system installation procedures

78

13. The guest will not reboot, instead it will shutdown..

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

79

14. Boot the guest. The guest's name was chosen when you used the virt-install in Section 8.1,
“Installing Red Hat Enterprise Linux 5 as a para-virtualized guest”. If you used the default example
the name is rhel5PV.

Use virsh to reboot the guest:

Chapter 8. Guest operating system installation procedures

80

virsh reboot rhel5PV

Alternatively, open virt-manager, select the name of your guest, click Open, then click Run.

A VNC window displaying the guest's boot processes now opens.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

81

15. Booting the guest starts the First Boot configuration screen. This wizard prompts you for some
basic configuration choices for your guest.

Chapter 8. Guest operating system installation procedures

82

16. Read and agree to the license agreement.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

83

Click Forward on the license agreement windows.

17. Configure the firewall.

Chapter 8. Guest operating system installation procedures

84

Click Forward to continue.

• If you disable the firewall you will be prompted to confirm your choice. Click Yes to confirm
and continue. It is not recommended to disable your firewall.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

85

18. Configure SELinux. It is strongly recommended you run SELinux in enforcing mode. You can
choose to either run SELinux in permissive mode or completely disable it.

Chapter 8. Guest operating system installation procedures

86

Click Forward to continue.

• If you choose to disable SELinux this warning displays. Click Yes to disable SELinux.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

87

19. Disable kdump. The use of kdump is unsupported on para-virtualized guests.

Chapter 8. Guest operating system installation procedures

88

Click Forward to continue.

20. Confirm time and date are set correctly for your guest. If you install a para-virtualized guest time
and date should synchronize with the hypervisor.

If the users sets the time or date during the installation it is ignored and the hypervisor's time is
used.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

89

Click Forward to continue.

21. Set up software updates. If you have a Red Hat Network subscription or want to trial one use the
screen below to register your newly installed guest in RHN.

Chapter 8. Guest operating system installation procedures

90

Click Forward to continue.

a. Confirm your choices for RHN.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

91

b. You may see an additional screen if you did not configure RHN access. If RHN access is not
enabled, you will not receive software updates.

Chapter 8. Guest operating system installation procedures

92

Click the Forward button.

22. Create a non root user account. It is advised to create a non root user for normal usage and
enhanced security. Enter the Username, Name and password.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

93

Click the Forward button.

23. If a sound device is detected and you require sound, calibrate it. Complete the process and click
Forward.

Chapter 8. Guest operating system installation procedures

94

24. You can install additional packages from a CD or another repository using this screen. It is often
more efficient to not install any additional software at this point but add packages later using the
yum command or RHN. Click Finish.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

95

25. The guest now configure any settings you changed and continues the boot process.

Chapter 8. Guest operating system installation procedures

96

26. The Red Hat Enterprise Linux 5 login screen displays. Log in using the username created in the
previous steps.

Installing Red Hat Enterprise Linux 5 as a para-virtualized guest

97

27. You have now successfully installed a para-virtualized Red Hat Enterprise Linux guest.

Chapter 8. Guest operating system installation procedures

98

8.2. Installing Red Hat Enterprise Linux as a fully virtualized
guest
This section covers installing a fully virtualized Red Hat Enterprise Linux 5 guest. This procedure
covers both the KVM and the Xen hypervisors; the steps are interchangeable and different steps are
noted.

Installing Red Hat Enterprise Linux as a fully virtualized guest

99

The KVM hypervisor requires Red Hat Enterprise Linux 5.4 or newer.

Procedure 8.3. Creating a fully virtualized Red Hat Enterprise Linux 5 guest with virt-manager
1. Open virt-manager

Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Select the hypervisor
Select the hypervisor. If installed, select Xen or KVM. For this example, select KVM. Note that
presently KVM is named qemu.

Connect to a hypervisor if you have not already done so. Open the File menu and select the Add
Connection... option. Refer to Section 26.1, “The Add Connection window”.

Once a hypervisor connection is selected the New button becomes available. Press the New
button.

3. Start the new virtual machine wizard
Pressing the New button starts the virtual machine creation wizard.

Chapter 8. Guest operating system installation procedures

100

Press Forward to continue.

4. Name the virtual machine
Provide a name for your virtualized guest. Punctuation and whitespace characters are not
permitted in versions before Red Hat Enterprise Linux 5.5. Red Hat Enterprise Linux 5.5 adds
support for '_', '.' and '-' characters.

Installing Red Hat Enterprise Linux as a fully virtualized guest

101

Press Forward to continue.

5. Choose a virtualization method
Choose the virtualization method for the virtualized guest. Note you can only select an installed
virtualization method. If you selected KVM or Xen earlier (Step 4) you must use the hypervisor
you selected. This example uses the KVM hypervisor.

Chapter 8. Guest operating system installation procedures

102

Press Forward to continue.

6. Select the installation method
Red Hat Enterprise Linux can be installed using one of the following methods:

• local install media, either an ISO image or physical optical media.

Installing Red Hat Enterprise Linux as a fully virtualized guest

103

• Select Network install tree if you have the installation tree for Red Hat Enterprise Linux hosted
somewhere on your network via HTTP, FTP or NFS.

• PXE can be used if you have a PXE server configured for booting Red Hat Enterprise Linux
installation media. Configuring a sever to PXE boot a Red Hat Enterprise Linux installation is
not covered by this guide. However, most of the installation steps are the same after the media
boots.

Set OS Type to Linux and OS Variant to Red Hat Enterprise Linux 5 as shown in the
screenshot.

Chapter 8. Guest operating system installation procedures

104

Press Forward to continue.

7. Locate installation media
Select ISO image location or CD-ROM or DVD device. This example uses an ISO file image of
the Red Hat Enterprise Linux installation DVD.

Installing Red Hat Enterprise Linux as a fully virtualized guest

105

a. Press the Browse button.

b. Search to the location of the ISO file and select the ISO image. Press Open to confirm your
selection.

c. The file is selected and ready to install.

Chapter 8. Guest operating system installation procedures

106

Press Forward to continue.

Installing Red Hat Enterprise Linux as a fully virtualized guest

107

Image files and SELinux

For ISO image files and guest storage images the recommended to use the /var/lib/
libvirt/images/ directory. Any other location may require additional configuration for
SELinux, refer to Section 18.2, “SELinux and virtualization” for details.

8. Storage setup
Assign a physical storage device (Block device) or a file-based image (File). File-based images
must be stored in the /var/lib/libvirt/images/ directory. Assign sufficient space for your
virtualized guest and any applications the guest requires.

Chapter 8. Guest operating system installation procedures

108

Press Forward to continue.

Installing Red Hat Enterprise Linux as a fully virtualized guest

109

Migration

Live and offline migrations require guests to be installed on shared network storage. For
information on setting up shared storage for guests refer to Part V, “Virtualization Storage
Topics”.

9. Network setup
Select either Virtual network or Shared physical device.

The virtual network option uses Network Address Translation (NAT) to share the default network
device with the virtualized guest. Use the virtual network option for wireless networks.

The shared physical device option uses a network bond to give the virtualized guest full access to
a network device.

Chapter 8. Guest operating system installation procedures

110

Press Forward to continue.

10. Memory and CPU allocation
The Memory and CPU Allocation window displays. Choose appropriate values for the virtualized
CPUs and RAM allocation. These values affect the host's and guest's performance.

Installing Red Hat Enterprise Linux as a fully virtualized guest

111

Virtualized guests require sufficient physical memory (RAM) to run efficiently and effectively.
Choose a memory value which suits your guest operating system and application requirements.
Remember, guests use physical RAM. Running too many guests or leaving insufficient memory
for the host system results in significant usage of virtual memory and swapping. Virtual memory is
significantly slower which causes degraded system performance and responsiveness. Ensure you
allocate sufficient memory for all guests and the host to operate effectively.

Assign sufficient virtual CPUs for the virtualized guest. If the guest runs a multithreaded
application, assign the number of virtualized CPUs the guest will require to run efficiently. Do
not assign more virtual CPUs than there are physical processors (or hyper-threads) available on
the host system. It is possible to over allocate virtual processors, however, over allocating has
a significant, negative effect on guest and host performance due to processor context switching
overheads.

Chapter 8. Guest operating system installation procedures

112

Press Forward to continue.

11. Verify and start guest installation
Verify the configuration.

Installing Red Hat Enterprise Linux as a fully virtualized guest

113

Press Finish to start the guest installation procedure.

12. Installing Red Hat Enterprise Linux
Complete the Red Hat Enterprise Linux 5 installation sequence. The installation sequence is
covered by the Installation Guide, refer to Red Hat Documentation1 for the Red Hat Enterprise
Linux Installation Guide.

http://redhat.com/docs

Chapter 8. Guest operating system installation procedures

114

A fully virtualized Red Hat Enterprise Linux 5 Guest is now installed.

8.3. Installing Windows XP as a fully virtualized guest
Windows XP can be installed as a fully virtualized guest. This section describes how to install
Windows XP as a fully virtualized guest on Red Hat Enterprise Linux.

This procedure covers both the KVM and the Xen hypervisors; the steps are interchangeable and
different steps are noted.

The KVM hypervisor requires Red Hat Enterprise Linux 5.4 or newer.

Before commencing this procedure ensure you must have root access.

Itanium® support

Presently, Red Hat Enterprise Linux hosts on the Itanium® architecture does not support fully
virtualized Windows XP guests. Only Windows Server 2003 for Itanium-based Systems is
supported for Itanium systems.

1. Starting virt-manager

Open Applications > System Tools > Virtual Machine Manager. Open a connection to a host
(click File > Add Connection). Click the New button to create a new virtual machine.

2. Naming your virtual system
Enter the System Name and click the Forward button.

Installing Windows XP as a fully virtualized guest

115

3. Choosing a virtualization method
If you selected KVM or Xen earlier (step Step 1) you must use the hypervisor you selected. This
example uses the KVM hypervisor.

Windows can only be installed using full virtualization.

Chapter 8. Guest operating system installation procedures

116

4. Choosing an installation method
This screen enables you to specify the installation method and the type of operating system.

Select Windows from the OS Type list and Microsoft Windows XP from the OS Variant list.

Installing Windows XP as a fully virtualized guest

117

Installing guests with PXE is supported in Red Hat Enterprise Linux 5.2. PXE installation is not
covered by this chapter.

Chapter 8. Guest operating system installation procedures

118

Image files and SELinux

For ISO image files and guest storage images the recommended to use the /var/lib/
libvirt/images/ directory. Any other location may require additional configuration for
SELinux, refer to Section 18.2, “SELinux and virtualization” for details.

Press Forward to continue.

5. Choose installation image
Choose the installation image or CD-ROM. For CD-ROM or DVD installation select the device
with the Windows installation disc in it. If you chose ISO Image Location enter the path to a
Windows installation .iso image.

Installing Windows XP as a fully virtualized guest

119

Press Forward to continue.

6. The Storage window displays. Choose a disk partition, LUN or create a file-based image for the
guest's storage.

Chapter 8. Guest operating system installation procedures

120

All image files are stored in the /var/lib/libvirt/images/ directory by default. In the
default configuration, other directory locations for file-based images are prohibited by SELinux. If
you use a different directory you must label the new directory according to SELinux policy. Refer
to Section 18.2, “SELinux and virtualization” for details.

Allocate extra space if the guest needs additional space for applications or other data. For
example, web servers require additional space for log files.

Installing Windows XP as a fully virtualized guest

121

Choose the appropriate size for the guest on your selected storage type and click the Forward
button.

Chapter 8. Guest operating system installation procedures

122

Note

It is recommend that you use the default directory for virtual machine images, /var/
lib/libvirt/images/. If you are using a different location (such as /images/ in this
example) make sure it is added to your SELinux policy and relabeled before you continue
with the installation (later in the document you will find information on how to modify your
SELinux policy)

7. Network setup
Select either Virtual network or Shared physical device.

The virtual network option uses Network Address Translation (NAT) to share the default network
device with the virtualized guest. Use the virtual network option for wireless networks.

The shared physical device option uses a network bond to give the virtualized guest full access to
a network device.

Installing Windows XP as a fully virtualized guest

123

Press Forward to continue.

8. The Memory and CPU Allocation window displays. Choose appropriate values for the virtualized
CPUs and RAM allocation. These values affect the host's and guest's performance.

Chapter 8. Guest operating system installation procedures

124

Virtualized guests require sufficient physical memory (RAM) to run efficiently and effectively.
Choose a memory value which suits your guest operating system and application requirements.
Most operating system require at least 512MB of RAM to work responsively. Remember, guests
use physical RAM. Running too many guests or leaving insufficient memory for the host system
results in significant usage of virtual memory and swapping. Virtual memory is significantly slower
causing degraded system performance and responsiveness. Ensure to allocate sufficient memory
for all guests and the host to operate effectively.

Assign sufficient virtual CPUs for the virtualized guest. If the guest runs a multithreaded
application, assign the number of virtualized CPUs the guest will require to run efficiently. Do
not assign more virtual CPUs than there are physical processors (or hyper-threads) available on
the host system. It is possible to over allocate virtual processors, however, over allocating has
a significant, negative effect on guest and host performance due to processor context switching
overheads.

Installing Windows XP as a fully virtualized guest

125

9. Before the installation continues you will see the summary screen. Press Finish to proceed to the
guest installation:

Chapter 8. Guest operating system installation procedures

126

10. You must make a hardware selection so open a console window quickly after the installation
starts. Click Finish then switch to the virt-manager summary window and select your newly
started Windows guest. Double click on the system name and the console window opens. Quickly
and repeatedly press F5 to select a new HAL, once you get the dialog box in the Windows install

Installing Windows XP as a fully virtualized guest

127

select the 'Generic i486 Platform' tab. Scroll through selections with the Up and Down
arrows.

11. The installation continues with the standard Windows installation.

Chapter 8. Guest operating system installation procedures

128

Installing Windows XP as a fully virtualized guest

129

12. Partition the hard drive when prompted.

Chapter 8. Guest operating system installation procedures

130

Installing Windows XP as a fully virtualized guest

131

13. After the drive is formatted, Windows starts copying the files to the hard drive.

Chapter 8. Guest operating system installation procedures

132

Installing Windows XP as a fully virtualized guest

133

14. The files are copied to the storage device, Windows now reboots.

Chapter 8. Guest operating system installation procedures

134

15. Restart your Windows guest:

virsh start WindowsGuest

Where WindowsGuest is the name of your virtual machine.

16. When the console window opens, you will see the setup phase of the Windows installation.

Installing Windows XP as a fully virtualized guest

135

17. If your installation seems to get stuck during the setup phase, restart the guest with virsh
reboot WindowsGuestName. When you restart the virtual machine, the Setup is being
restarted message displays:

Chapter 8. Guest operating system installation procedures

136

18. After setup has finished you will see the Windows boot screen:

Installing Windows XP as a fully virtualized guest

137

19. Now you can continue with the standard setup of your Windows installation:

Chapter 8. Guest operating system installation procedures

138

20. The setup process is complete.

Installing Windows Server 2003 as a fully virtualized guest

139

8.4. Installing Windows Server 2003 as a fully virtualized
guest
This chapter describes installing a fully virtualized Windows Server 2003 guest with the virt-
install command. virt-install can be used instead of virt-manager This process is similar
to the Windows XP installation covered in Section 8.3, “Installing Windows XP as a fully virtualized
guest”.

Chapter 8. Guest operating system installation procedures

140

Itanium® support

Presently, Red Hat Enterprise Linux hosts on the Itanium® architecture do not support fully
virtualized windows guests. This section only applies to x86 and x86-64 hosts.

1. Using virt-install for installing Windows Server 2003 as the console for the Windows guest
opens the virt-viewer window promptly. The examples below installs a Windows Server 2003
guest with the virt-install command.

a. Xen virt-install

virt-install --virt-type=xen -hvm \
 --name windows2003sp1
 --file=/var/lib/libvirt/images/windows2003sp2.img \
 --file-size=6 \
 --cdrom=/var/lib/libvirt/images/ISOs/WIN/en_windows_server_2003_sp1.iso \
 --vnc --ram=1024

b. KVM virt-install

virt-install --accelerate --hvm --connect qemu:///system \
 --name rhel3support \
 --network network:default \
 --file=/var/lib/libvirt/images/windows2003sp2.img \
 --file-size=6 \
 --cdrom=/var/lib/libvirt/images/ISOs/WIN/en_windows_server_2003_sp1.iso \
 --vnc --ram=1024

2. Once the guest boots into the installation you must quickly press F5. If you do not press F5 at the
right time you will need to restart the installation. Pressing F5 allows you to select different HAL or
Computer Type. Choose Standard PC as the Computer Type. Changing the Computer Type
is required for Windows Server 2003 virtualized guests.

Installing Windows Server 2003 as a fully virtualized guest

141

3. Complete the rest of the installation.

Chapter 8. Guest operating system installation procedures

142

Installing Windows Server 2003 as a fully virtualized guest

143

Chapter 8. Guest operating system installation procedures

144

4. Windows Server 2003 is now installed as a fully virtualized guest.

8.5. Installing Windows Server 2008 as a fully virtualized
guest
This section covers installing a fully virtualized Windows Server 2008 guest. This procedure covers
both the KVM and the Xen hypervisors; the steps are interchangeable and different steps are noted.

The KVM hypervisor requires Red Hat Enterprise Linux 5.4 or newer.

Installing Windows Server 2008 as a fully virtualized guest

145

Procedure 8.4. Installing Windows Server 2008 with virt-manager
1. Open virt-manager

Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Select the hypervisor
Select the hypervisor. If installed, select Xen or KVM. For this example, select KVM. Note that
presently KVM is named qemu.

Once the option is selected the New button becomes available. Press the New button.

3. Start the new virtual machine wizard
Pressing the New button starts the virtual machine creation wizard.

Chapter 8. Guest operating system installation procedures

146

Press Forward to continue.

4. Name the virtual machine
Provide a name for your virtualized guest. Punctuation and whitespace characters are not
permitted in versions before Red Hat Enterprise Linux 5.5. Red Hat Enterprise Linux 5.5 adds
support for '_', '.' and '-' characters.

Installing Windows Server 2008 as a fully virtualized guest

147

Press Forward to continue.

5. Choose a virtualization method
Choose the virtualization method for the virtualized guest. Note you can only select an installed
virtualization method. If you selected KVM or Xen earlier (step 2) you must use the hypervisor you
selected. This example uses the KVM hypervisor.

Chapter 8. Guest operating system installation procedures

148

Press Forward to continue.

6. Select the installation method
For all versions of Windows you must use local install media, either an ISO image or physical
optical media.

Installing Windows Server 2008 as a fully virtualized guest

149

PXE may be used if you have a PXE server configured for Windows network installation. PXE
Windows installation is not covered by this guide.

Set OS Type to Windows and OS Variant to Microsoft Windows 2008 as shown in the
screenshot.

Chapter 8. Guest operating system installation procedures

150

Press Forward to continue.

7. Locate installation media
Select ISO image location or CD-ROM or DVD device. This example uses an ISO file image of
the Windows Server 2008 installation CD.

a. Press the Browse button.

b. Search to the location of the ISO file and select it.

Press Open to confirm your selection.

c. The file is selected and ready to install.

Installing Windows Server 2008 as a fully virtualized guest

151

Press Forward to continue.

Chapter 8. Guest operating system installation procedures

152

Image files and SELinux

For ISO image files and guest storage images, the recommended directory to use is the
/var/lib/libvirt/images/ directory. Any other location may require additional
configuration for SELinux, refer to Section 18.2, “SELinux and virtualization” for details.

8. Storage setup
Assign a physical storage device (Block device) or a file-based image (File). File-based images
must be stored in the /var/lib/libvirt/images/ directory. Assign sufficient space for your
virtualized guest and any applications the guest requires.

Installing Windows Server 2008 as a fully virtualized guest

153

Press Forward to continue.

9. Network setup
Select either Virtual network or Shared physical device.

Chapter 8. Guest operating system installation procedures

154

The virtual network option uses Network Address Translation (NAT) to share the default network
device with the virtualized guest. Use the virtual network option for wireless networks.

The shared physical device option uses a network bond to give the virtualized guest full access to
a network device.

Installing Windows Server 2008 as a fully virtualized guest

155

Press Forward to continue.

10. Memory and CPU allocation
The Memory and CPU Allocation window displays. Choose appropriate values for the virtualized
CPUs and RAM allocation. These values affect the host's and guest's performance.

Virtualized guests require sufficient physical memory (RAM) to run efficiently and effectively.
Choose a memory value which suits your guest operating system and application requirements.
Remember, guests use physical RAM. Running too many guests or leaving insufficient memory
for the host system results in significant usage of virtual memory and swapping. Virtual memory is
significantly slower which causes degraded system performance and responsiveness. Ensure you
allocate sufficient memory for all guests and the host to operate effectively.

Assign sufficient virtual CPUs for the virtualized guest. If the guest runs a multithreaded
application, assign the number of virtualized CPUs the guest will require to run efficiently. Do
not assign more virtual CPUs than there are physical processors (or hyper-threads) available on
the host system. It is possible to over allocate virtual processors, however, over allocating has
a significant, negative effect on guest and host performance due to processor context switching
overheads.

Chapter 8. Guest operating system installation procedures

156

Press Forward to continue.

11. Verify and start guest installation
Verify the configuration.

Installing Windows Server 2008 as a fully virtualized guest

157

Press Finish to start the guest installation procedure.

Chapter 8. Guest operating system installation procedures

158

12. Installing Windows

Complete the Windows Server 2008 installation sequence. The installation sequence is not
covered by this guide, refer to Microsoft's documentation2 for information on installing Windows.

http://microsoft.com/support

Part III. Configuration

Configuring Virtualization
in Red Hat Enterprise Linux

These chapters cover configuration procedures for various advanced virtualization tasks. These tasks
include adding network and storage devices, enhancing security, improving performance, and using
the Para-virtualized drivers on fully virtualized guests.

Chapter 9.

161

Virtualized storage devices
This chapter covers installing and configuring storage devices in virtualized guests. The term block
devices refers to various forms of storage devices. All the procedures in this chapter work with both
Xen and KVM hypervisors.

Valid disk targets

The target variable in libvirt configuration files accepts only the following device names:

• /dev/xvd[a to z][1 to 15]

Example: /dev/xvdb13

• /dev/xvd[a to i][a to z][1 to 15]

Example: /dev/xvdbz13

• /dev/sd[a to p][1 to 15]

Example: /dev/sda1

• /dev/hd[a to t][1 to 63]

Example: /dev/hdd3

9.1. Creating a virtualized floppy disk controller
Floppy disk controllers are required for a number of older operating systems, especially for installing
drivers. Presently, physical floppy disk devices cannot be accessed from virtualized guests. However,
creating and accessing floppy disk images from virtualized floppy drives is supported. This section
covers creating a virtualized floppy device.

An image file of a floppy disk is required. Create floppy disk image files with the dd command.
Replace /dev/fd0 with the name of a floppy device and name the disk appropriately.

dd if=/dev/fd0 of=~/legacydrivers.img

Para-virtualized drivers note

The para-virtualized drivers can map physical floppy devices to fully virtualized guests. For more
information on using para-virtualized drivers read Chapter 13, KVM Para-virtualized Drivers.

This example uses a guest created with virt-manager running a fully virtualized Red Hat Enterprise
Linux installation with an image located in /var/lib/libvirt/images/rhel5FV.img. The Xen
hypervisor is used in the example.

1. Create the XML configuration file for your guest image using the virsh command on a running
guest.

Chapter 9. Virtualized storage devices

162

virsh dumpxml rhel5FV > rhel5FV.xml

This saves the configuration settings as an XML file which can be edited to customize the
operations and devices used by the guest. For more information on using the virsh XML
configuration files, refer to Chapter 33, Creating custom libvirt scripts.

2. Create a floppy disk image for the guest.

dd if=/dev/zero of=/var/lib/libvirt/images/rhel5FV-floppy.img bs=512 count=2880

3. Add the content below, changing where appropriate, to your guest's configuration XML file. This
example is an emulated floppy device using a file-based image.

<disk type='file' device='floppy'>
 <source file='/var/lib/libvirt/images/rhel5FV-floppy.img'/>
 <target dev='fda'/>
</disk>

4. Force the guest to stop. To shut down the guest gracefully, use the virsh shutdown command
instead.

virsh destroy rhel5FV

5. Restart the guest using the XML configuration file.

virsh create rhel5FV.xml

The floppy device is now available in the guest and stored as an image file on the host.

9.2. Adding storage devices to guests
This section covers adding storage devices to virtualized guest. Additional storage can only be added
after guests are created. The supported storage devices and protocol include:

• local hard drive partitions,

• logical volumes,

• Fibre Channel or iSCSI directly connected to the host.

• File containers residing in a file system on the host.

• NFS file systems mounted directly by the virtual machine.

• iSCSI storage directly accessed by the guest.

• Cluster File Systems (GFS).

Adding file-based storage to a guest
File-based storage or file-based containers are files on the hosts file system which act as virtualized
hard drives for virtualized guests. To add a file-based container perform the following steps:

1. Create an empty container file or using an existing file container (such as an ISO file).

Adding storage devices to guests

163

a. Create a sparse file using the dd command. Sparse files are not recommended due to data
integrity and performance issues. Sparse files are created much faster and can used for
testing but should not be used in production environments.

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1M seek=4096 count=0

b. Non-sparse, pre-allocated files are recommended for file-based storage images. Create a
non-sparse file, execute:

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1M count=4096

Both commands create a 4GB file which can be used as additional storage for a virtualized guest.

2. Dump the configuration for the guest. In this example the guest is called Guest1 and the file is
saved in the users home directory.

virsh dumpxml Guest1 > ~/Guest1.xml

3. Open the configuration file (Guest1.xml in this example) in a text editor. Find the <disk>
elements, these elements describe storage devices. The following is an example disk element:

<disk type='file' device='disk'>
 <driver name='tap' type='aio'/>
 <source file='/var/lib/libvirt/images/Guest1.img'/>
 <target dev='xvda'/>
</disk>

4. Add the additional storage by duplicating or writing a new <disk> element. Ensure you specify
a device name for the virtual block device attributes. These attributes must be unique for each
guest configuration file. The following example is a configuration file section which contains an
additional file-based storage container named FileName.img.

<disk type='file' device='disk'>
 <driver name='tap' type='aio'/>
 <source file='/var/lib/libvirt/images/Guest1.img'/>
 <target dev='xvda'/>
</disk>
<disk type='file' device='disk'>
 <driver name='tap' type='aio'/>
 <source file='/var/lib/libvirt/images/FileName.img'/>
 <target dev='hda'/>
</disk>

5. Restart the guest from the updated configuration file.

virsh create Guest1.xml

6. The following steps are Linux guest specific. Other operating systems handle new storage
devices in different ways. For other systems, refer to that operating system's documentation

The guest now uses the file FileName.img as the device called /dev/sdb. This device requires
formatting from the guest. On the guest, partition the device into one primary partition for the
entire device then format the device.

Chapter 9. Virtualized storage devices

164

a. Press n for a new partition.

fdisk /dev/sdb
Command (m for help):

b. Press p for a primary partition.

Command action
 e extended
 p primary partition (1-4)

c. Choose an available partition number. In this example the first partition is chosen by entering
1.

Partition number (1-4): 1

d. Enter the default first cylinder by pressing Enter.

First cylinder (1-400, default 1):

e. Select the size of the partition. In this example the entire disk is allocated by pressing Enter.

Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):

f. Set the type of partition by pressing t.

Command (m for help): t

g. Choose the partition you created in the previous steps. In this example, the partition number
is 1.

Partition number (1-4): 1

h. Enter 83 for a linux partition.

Hex code (type L to list codes): 83

i. write changes to disk and quit.

Command (m for help): w
Command (m for help): q

j. Format the new partition with the ext3 file system.

mke2fs -j /dev/sdb1

7. Mount the disk on the guest.

mount /dev/sdb1 /myfiles

Configuring persistent storage in Red Hat Enterprise Linux 5

165

The guest now has an additional virtualized file-based storage device.

Adding hard drives and other block devices to a guest
System administrators use additional hard drives for to provide more storage space or to separate
system data from user data. This procedure, Procedure 9.1, “Adding physical block devices to
virtualized guests”, describes how to add a hard drive on the host to a virtualized guest.

The procedure works for all physical block devices, this includes CD-ROM, DVD and floppy devices.

Block device security

The host should not use disk labels to identify file systems in the fstab file, the initrd file or
used by the kernel command line. If less privileged users, especially virtualized guests, have
write access to whole partitions or LVM volumes the host system could be compromised.

Guest should not be given write access to whole disks or block devices (for example, /dev/
sdb). Virtualized guests with access to block devices may be able to access other block devices
on the system or modify volume labels which can be used to compromise the host system. Use
partitions (for example, /dev/sdb1) or LVM volumes to prevent this issue.

Procedure 9.1. Adding physical block devices to virtualized guests
1. Physically attach the hard disk device to the host. Configure the host if the drive is not accessible

by default.

2. Configure the device with multipath and persistence on the host if required.

3. Use the virsh attach command. Replace: myguest with your guest's name, /dev/sdb1
with the device to add, and sdc with the location for the device on the guest. The sdc must be an
unused device name. Use the sd* notation for Windows guests as well, the guest will recognize
the device correctly.

Append the --type cdrom parameter to the command for CD-ROM or DVD devices.

Append the --type floppy parameter to the command for floppy devices.

virsh attach-disk myguest
 /dev/sdb1
 sdc --driver tap --mode readonly

4. The guest now has a new hard disk device called /dev/sdb on Linux or D: drive, or similar,
on Windows. This device may require formatting.

9.3. Configuring persistent storage in Red Hat Enterprise
Linux 5
This section is for systems with external or networked storage; that is, Fibre Channel or iSCSI based
storage devices. It is recommended that those systems have persistent device names configured for
your hosts. This assists live migration as well as providing consistent device names and storage for
multiple virtualized systems.

Chapter 9. Virtualized storage devices

166

Universally Unique Identifiers(UUIDs) are a standardized method for identifying computers and
devices in distributed computing environments. This sections uses UUIDs to identify iSCSI or Fibre
Channel LUNs. UUIDs persist after restarts, disconnection and device swaps. The UUID is similar to a
label on the device.

Systems which are not running multipath must use Single path configuration. Systems running
multipath can use Multiple path configuration.

Single path configuration
This procedure implements LUN device persistence using udev. Only use this procedure for hosts
which are not using multipath.

1. Edit the /etc/scsi_id.config file.

a. Ensure the options=-b is line commented out.

options=-b

b. Add the following line:

options=-g

This option configures udev to assume all attached SCSI devices return a UUID.

2. To display the UUID for a given device run the scsi_id -g -s /block/sd* command. For
example:

scsi_id -g -s /block/sd*
3600a0b800013275100000015427b625e

The output may vary from the example above. The output displays the UUID of the device /dev/
sdc.

3. Verify the UUID output by the scsi_id -g -s /block/sd* command is identical from
computer which accesses the device.

4. Create a rule to name the device. Create a file named 20-names.rules in the /etc/udev/
rules.d directory. Add new rules to this file. All rules are added to the same file using the same
format. Rules follow this format:

KERNEL=="sd[a-z]", BUS=="scsi", PROGRAM="/sbin/scsi_id -g -s /block/%k", RESULT="UUID",
 NAME="devicename"

Replace UUID and devicename with the UUID retrieved above, and a name for the device. This
is a rule for the example above:

KERNEL="sd*", BUS="scsi", PROGRAM="/sbin/scsi_id -g -s",
 RESULT="3600a0b800013275100000015427b625e", NAME="rack4row16"

The udev daemon now searches all devices named /dev/sd* for the UUID in the rule. Once
a matching device is connected to the system the device is assigned the name from the rule. In
the a device with a UUID of 3600a0b800013275100000015427b625e would appear as /dev/
rack4row16.

Add a virtualized CD-ROM or DVD device to a guest

167

5. Append this line to /etc/rc.local:

/sbin/start_udev

6. Copy the changes in the /etc/scsi_id.config, /etc/udev/rules.d/20-names.rules,
and /etc/rc.local files to all relevant hosts.

/sbin/start_udev

Networked storage devices with configured rules now have persistent names on all hosts where the
files were updated This means you can migrate guests between hosts using the shared storage and
the guests can access the storage devices in their configuration files.

Multiple path configuration
The multipath package is used for systems with more than one physical path from the computer
to storage devices. multipath provides fault tolerance, fail-over and enhanced performance for
network storage devices attached to Red Hat Enterprise Linux systems.

Implementing LUN persistence in a multipath environment requires defined alias names for your
multipath devices. Each storage device has a UUID which acts as a key for the aliased names. Identify
a device's UUID using the scsi_id command.

scsi_id -g -s /block/sdc

The multipath devices will be created in the /dev/mpath directory. In the example below 4 devices
are defined in /etc/multipath.conf:

multipaths {
 multipath {
 wwid 3600805f30015987000000000768a0019
 alias oramp1
 }
 multipath {
 wwid 3600805f30015987000000000d643001a
 alias oramp2
 }
 mulitpath {
 wwid 3600805f3001598700000000086fc001b
 alias oramp3
 }
 mulitpath {
 wwid 3600805f300159870000000000984001c
 alias oramp4
 }
}

This configuration will create 4 LUNs named /dev/mpath/oramp1, /dev/mpath/oramp2, /dev/
mpath/oramp3 and /dev/mpath/oramp4. Once entered, the mapping of the devices' WWID to
their new names are now persistent after rebooting.

9.4. Add a virtualized CD-ROM or DVD device to a guest
To attach an ISO file to a guest while the guest is online use virsh with the attach-disk
parameter.

Chapter 9. Virtualized storage devices

168

virsh attach-disk [domain-id] [source] [target] --driver file --type cdrom --mode readonly

The source and target parameters are paths for the files and devices, on the host and guest
respectively. The source parameter can be a path to an ISO file or the device from the /dev
directory.

Chapter 10.

169

Network Configuration
This page provides an introduction to the common networking configurations used by libvirt based
applications. This information applies to all hypervisors, whether Xen, KVM or another. For additional
information consult the libvirt network architecture docs.

The two common setups are "virtual network" or "shared physical device". The former is identical
across all distributions and available out-of-the-box. The latter needs distribution specific manual
configuration.

Network services on virtualized guests are not accessible by default from external hosts. You must
enable either Network address translation (NAT) ir a network Bridge to allow external hosts access to
network services on virtualized guests.

10.1. Network address translation (NAT) with libvirt
One of the most common methods for sharing network connections is to use Network address
translation (NAT) forwarding (also know as virtual networks).

Host configuration
Every standard libvirt installation provides NAT based connectivity to virtual machines out of the
box. This is the so called 'default virtual network'. Verify that it is available with the virsh net-list
--all command.

virsh net-list --all
Name State Autostart

default active yes

If it is missing, the example XML configuration file can be reloaded and activated:

virsh net-define /usr/share/libvirt/networks/default.xml

The default network is defined from /usr/share/libvirt/networks/default.xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

virsh net-start default
Network default started

Once the libvirt default network is running, you will see an isolated bridge device. This device does
not have any physical interfaces added, since it uses NAT and IP forwarding to connect to outside
world. Do not add new interfaces.

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes

Chapter 10. Network Configuration

170

libvirt adds iptables rules which allow traffic to and from guests attached to the virbr0 device
in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. libvirt then attempts to enable the
ip_forward parameter. Some other applications may disable ip_forward, so the best option is to
add the following to /etc/sysctl.conf.

 net.ipv4.ip_forward = 1

Guest configuration
Once the host configuration is complete, a guest can be connected to the virtual network based on its
name. To connect a guest to the 'default' virtual network, the following XML can be used in the guest:

<interface type='network'>
 <source network='default'/>
</interface>

Note

Defining a MAC address is optional. A MAC address is automatically generated if omitted.
Manually setting the MAC address is useful in certain situations.

<interface type='network'>
 <source network='default'/>
 <mac address='00:16:3e:1a:b3:4a'/>
 </interface>

10.2. Bridged networking with libvirt
Bridged networking (also known as physical device sharing) is used for dedicating a physical device
to a virtual machine. Bridging is often used for more advanced setups and on servers with multiple
network interfaces.

Disable Xen network scripts
If your system was using a Xen bridge, it is recommended to disable the default Xen network bridge by
editing /etc/xen/xend-config.sxp and changing the line:

 (network-script network-bridge)

To:

 (network-script /bin/true)

Disable NetworkManager
NetworkManager does not support bridging. Running NetworkManager will overwrite any manual
bridge configuration. Because of this, NetworkManager should be disabled in order to use networking
via the network scripts (located in the /etc/sysconfig/network-scripts/ directory):

chkconfig NetworkManager off

Bridged networking with libvirt

171

chkconfig network on
service NetworkManager stop
service network start

Note

As an alternative to turning off NetworkManager, add "NM_CONTROLLED=no" to the ifcfg-
* scripts used in the examples. If you do not either set this parameter or disable
NetworkManager entirely, any bridge configuration will be overwritten and lost when
NetworkManager next starts.

Creating network initscripts
Create or edit the following two network configuration files. This step can be repeated (with different
names) for additional network bridges.

Change to the /etc/sysconfig/network-scripts directory:

cd /etc/sysconfig/network-scripts

Open the network script for the device you are adding to the bridge. In this example, ifcfg-eth0
defines the physical network interface which is set as part of a bridge:

DEVICE=eth0
change the hardware address to match the hardware address your NIC uses
HWADDR=00:16:76:D6:C9:45
ONBOOT=yes
BRIDGE=br0

Tip

You can configure the device's Maximum Transfer Unit (MTU) by appending an MTU variable to
the end of the configuration file.

MTU=9000

Create a new network script in the /etc/sysconfig/network-scripts directory called ifcfg-
br0 or similar. The br0 is the name of the bridge, this can be anything as long as the name of the file
is the same as the DEVICE parameter.

DEVICE=br0
TYPE=Bridge
BOOTPROTO=dhcp
ONBOOT=yes
DELAY=0

Chapter 10. Network Configuration

172

IP address configuration

IP address configuration, be it dynamic or static, should be configured on the bridge itself (for
example, in the ifcfg-br0 file). Network access will not function as expected if IP address
details are configured on the physical interface that the bridge is connected to.

Warning

The line, TYPE=Bridge, is case-sensitive. It must have uppercase 'B' and lower case 'ridge'.

After configuring, restart networking or reboot.

service network restart

Configure iptables to allow all traffic to be forwarded across the bridge.

iptables -I FORWARD -m physdev --physdev-is-bridged -j ACCEPT
service iptables save
service iptables restart

Disable iptables on bridges

Alternatively, prevent bridged traffic from being processed by iptables rules. In /etc/
sysctl.conf append the following lines:

net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

Reload the kernel parameters configured with sysctl.

sysctl -p /etc/sysctl.conf

Restart the libvirt daemon.

service libvirtd reload

You should now have a "shared physical device", which guests can be attached and have full LAN
access. Verify your new bridge:

brctl show
bridge name bridge id STP enabled interfaces

Bridged networking with libvirt

173

virbr0 8000.000000000000 yes
br0 8000.000e0cb30550 no eth0

Note, the bridge is completely independent of the virbr0 bridge. Do not attempt to attach a physical
device to virbr0. The virbr0 bridge is only for Network Address Translation (NAT) connectivity.

174

Chapter 11.

175

Pre-Red Hat Enterprise Linux 5.4 Xen
networking
This chapter covers special topics for networking and network configuration with the Xen hypervisor.

Most guest network configuration occurs during the guest initialization and installation process. To
learn about configuring networking during the guest installation process, read the relevant sections of
the installation process, Chapter 7, Virtualized guest installation overview.

Network configuration is also covered in the tool specific reference chapters for virsh (Chapter 25,
Managing guests with virsh) and virt-manager (Chapter 26, Managing guests with the Virtual
Machine Manager (virt-manager)). Those chapters provide a detailed description of the networking
configuration tasks using both tools.

Tip

Using para-virtualized network drivers improves performance on fully virtualized Linux guests.
Chapter 12, Xen Para-virtualized Drivers explains how to utilize para-virtualized network drivers.

11.1. Configuring multiple guest network bridges to use
multiple Ethernet cards
Process to setup network bridges (with the Xen hypervisor):

1. Configure another network interface using either the system-config-network application.
Alternatively, create a new configuration file named ifcfg-ethX in the /etc/sysconfig/
network-scripts/ directory where X is any number not already in use. Below is an example
configuration file for a second network interface called eth1

$ cat /etc/sysconfig/network-scripts/ifcfg-eth1
DEVICE=eth1
BOOTPROTO=static
ONBOOT=yes
USERCTL=no
IPV6INIT=no
PEERDNS=yes
TYPE=Ethernet
NETMASK=255.255.255.0
IPADDR=10.1.1.1
GATEWAY=10.1.1.254
ARP=yes

2. Copy the file, /etc/xen/scripts/network-bridge, to /etc/xen/scripts/network-
bridge.xen.

3. Comment out any existing network scripts in /etc/xen/xend-config.sxp and add the line
(network-xen-multi-bridge). A typical xend-config.sxp file should have the following
line. Comment this line out. Use the # symbol to comment out lines.

network-script network-bridge

Chapter 11. Pre-Red Hat Enterprise Linux 5.4 Xen networking

176

Below is the commented out line and the new line, containing the network-xen-multi-
bridge parameter to enable multiple network bridges.

#network-script network-bridge
network-script network-xen-multi-bridge

4. Create a script to create multiple network bridges. This example creates a script called network-
xen-multi-bridge.sh in the /etc/xen/scripts/ directory. A sample scripts is below, this
example script will create two Xen network bridges (xenbr0 and xenbr1) one will be attached to
eth1 and the other one to eth0. If you want to create additional bridges just follow the example in
the script and copy nad paste the lines as required:

#!/bin/sh
network-xen-multi-bridge
Exit if anything goes wrong.
set -e
First arg is the operation.
OP=$1
shift
script=/etc/xen/scripts/network-bridge.xen
case ${OP} in
start)
 $script start vifnum=1 bridge=xenbr1 netdev=eth1
 $script start vifnum=0 bridge=xenbr0 netdev=eth0
 ;;
stop)
 $script stop vifnum=1 bridge=xenbr1 netdev=eth1
 $script stop vifnum=0 bridge=xenbr0 netdev=eth0
 ;;
status)
 $script status vifnum=1 bridge=xenbr1 netdev=eth1
 $script status vifnum=0 bridge=xenbr0 netdev=eth0
 ;;
*)
 echo 'Unknown command: ' ${OP}
 echo 'Valid commands are: start, stop, status'
 exit 1
esac

5. Make the script executable.

chmod +x /etc/xen/scripts/network-xen-multi-bridge.sh

6. Restart networking or restart the system to activate the bridges.

service network restart

Multiple bridges should now be configured for guests on the Xen hypervisor.

Red Hat Enterprise Linux 5.0 laptop network configuration

177

11.2. Red Hat Enterprise Linux 5.0 laptop network
configuration

For Red Hat Enterprise Linux 5.1 or newer

This section describes manually adding network bridges. This procedure is not required
or recommended for all versions of Red Hat Enterprise Linux newer than version 5.0. For
newer versions use "Virtual Network" adapters when creating guests in virt-manager.
NetworkManager works with virtual network devices by default in Red Hat Enterprise Linux 5.1
and newer.

An example of a virsh XML configuration file for a virtual network device:

<interface type='network'>
 <mac address='AA:AA:AA:AA:AA:AA'/>
 <source network='default'/>
 <target dev='vnet0'/>
 <model type='virtio'/>
</interface>

In xm configuration files, virtual network devices are labeled "vif".

The challenge in running the Xen hypervisor on a laptop is that most laptops will connected to the
network via wireless network or wired connections. Often these connections are switched multiple
times a day. In such an environment, the system assumes it has access to the same interface all the
time and it also can perform ifup or ifdown calls to the network interface it is using. In addition
wireless network cards do not work well in a virtualization environment due to Xen's (default) bridged
network usage.

This setup will also enable you to run Xen in offline mode when you have no active network
connection on your laptop. The easiest solution to run Xen on a laptop is to follow the procedure
outlined below:

• You will be configuring a 'dummy' network interface which will be used by Xen. In this example
the interface is called dummy0. This will also allow you to use a hidden IP address space for your
guests.

• You will need to use static IP address as DHCP will not listen on the dummy interface for DHCP
requests. You can compile your own version of DHCP to listen on dummy interfaces, however you
may want to look into using dnsmasq for DNS, DHCP and tftpboot services in a Xen environment.
Setup and configuration are explained further down in this section/chapter.

• You can also configure NAT and IP masquerading in order to enable access to the network from
your guests.

Configuring a dummy network interface
Perform the following configuration steps on your host:

1. create a dummy0 network interface and assign it a static IP address. In our example I selected
10.1.1.1 to avoid routing problems in our environment. To enable dummy device support add the
following lines to /etc/modprobe.conf

Chapter 11. Pre-Red Hat Enterprise Linux 5.4 Xen networking

178

alias dummy0 dummy
options dummy numdummies=1

2. To configure networking for dummy0 edit/create /etc/sysconfig/network-scripts/
ifcfg-dummy0:

DEVICE=dummy0
BOOTPROTO=none
ONBOOT=yes
USERCTL=no
IPV6INIT=no
PEERDNS=yes
TYPE=Ethernet
NETMASK=255.255.255.0
IPADDR=10.1.1.1
ARP=yes

3. Bind xenbr0 to dummy0, so you can use networking even when not connected to a physical
network. Edit /etc/xen/xend-config.sxp to include the netdev=dummy0 entry:

(network-script 'network-bridge bridge=xenbr0 netdev=dummy0')

4. Open /etc/sysconfig/network in the guest and modify the default gateway to point to
dummy0. If you are using a static IP, set the guest's IP address to exist on the same subnet as
dummy0.

NETWORKING=yes
HOSTNAME=localhost.localdomain
GATEWAY=10.1.1.1
IPADDR=10.1.1.10
NETMASK=255.255.255.0

5. Setting up NAT in the host will allow the guests access Internet, including with wireless, solving
the Xen and wireless card issues. The script below will enable NAT based on the interface
currently used for your network connection.

Configuring NAT for virtualized guests
Network address translation (NAT) allows multiple network address to connect through a single
IP address by intercepting packets and passing them to the private IP addresses. You can copy
the following script to /etc/init.d/xenLaptopNAT and create a soft link to /etc/rc3.d/
S99xenLaptopNAT. this automatically starts NAT at boot time.

NetworkManager and wireless NAT

The script below may not work well with wireless network or NetworkManager due to start up
delays. In this case run the script manually once the machine has booted.

#!/bin/bash
PATH=/usr/bin:/sbin:/bin:/usr/sbin
export PATH

Red Hat Enterprise Linux 5.0 laptop network configuration

179

GATEWAYDEV=`ip route | grep default | awk {'print $5'}`
iptables -F
case "$1" in
start)
 if test -z "$GATEWAYDEV"; then
 echo "No gateway device found"
 else
 echo "Masquerading using $GATEWAYDEV"
 /sbin/iptables -t nat -A POSTROUTING -o $GATEWAYDEV -j MASQUERADE
fi
 echo "Enabling IP forwarding"
 echo 1 > /proc/sys/net/ipv4/ip_forward
 echo "IP forwarding set to `cat /proc/sys/net/ipv4/ip_forward`"
 echo "done."
 ;;
*)
echo "Usage: $0 {start|restart|status}"
;;
esac

Configuring dnsmasq for the DNS, DHCP and tftpboot services
One of the challenges in running virtualization on a laptop (or any other computer which is not
connected by a single or stable network connection) is the change in network interfaces and
availability. Using a dummy network interface helps to build a more stable environment but it also
brings up new challenges in providing DHCP, DNS and tftpboot services to your virtual machines/
guests. The default DHCP daemon shipped with Red Hat Enterprise Linux and Fedora Core will not
listen on dummy interfaces, your DNS forwarded information may change as you connect to different
networks and VPNs.

One solution to the above challenges is to use dnsmasq which can provide all of the above service
in a single package and will also allow you to control its service only being available to requests from
your dummy interface. Below is a short write up on how to configure dnsmasq on a laptop running
virtualization:

• Get the latest version of dnsmasq from here1.

• Documentation for dnsmasq can be found here2.

• Copy the other files referenced below from http://et.redhat.com/~jmh/tools/xen/ and grab the file
dnsmasq.tgz. The tar archive includes the following files:

• nm-dnsmasq can be used as a dispatcher script for NetworkManager. It will be run every time
NetworkManager detects a change in connectivity and force a restart/reload of dnsmasq. It should
be copied to /etc/NetworkManager/dispatcher.d/nm-dnsmasq

• xenDNSmasq can be used as the main start up or shut down script for /etc/init.d/
xenDNSmasq

• dnsmasq.conf is a sample configuration file for /etc/dnsmasq.conf

• dnsmasq is the binary image for /usr/local/sbin/dnsmasq

• Once you have unpacked and build dnsmasq (the default installation will be the binary into /usr/
local/sbin/dnsmasq) you need to edit your dnsmasq configuration file. The file is located in /
etc/dnsmaqs.conf

• Edit the configuration to suit your local needs and requirements. The following parameters are likely
the ones you want to modify:

http://www.thekelleys.org.uk/dnsmasq/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://et.redhat.com/~jmh/tools/xen/

Chapter 11. Pre-Red Hat Enterprise Linux 5.4 Xen networking

180

• The interface parameter allows dnsmasq to listen for DHCP and DNS requests only on
specified interfaces. This could be dummy interfaces but not your public interfaces as well
as the local loopback interface. Add another interface line for more than one interface.
interface=dummy0 is an example which listens on the dummy0 interface.

• dhcp-range to enable the integrated DHCP server, you need to supply the range of
addresses available for lease and optionally a lease time. If you have more than one
network, you will need to repeat this for each network on which you want to supply DHCP
service. An example would be (for network 10.1.1.* and a lease time of 12hrs): dhcp-
range=10.1.1.10,10.1.1.50,255.255.255.0,12h

• dhcp-option to override the default route supplied by dnsmasq, which assumes the
router is the same machine as the one running dnsmasq. An example would be dhcp-
option=3,10.1.1.1

• After configuring dnsmasq you can copy the script below as xenDNSmasq to /etc/init.d

• If you want to automatically start dnsmasq during system boot you should register it using
chkconfig(8):

chkconfig --add xenDNSmasq

Enable it for automatic start up:

chkconfig --levels 345 xenDNSmasq on

• To configure dnsmasq to restart every time NetworkManager detects a change in connectivity you
can use the supplied script nm-dnsmasq.

• Copy the nm-dnsmasq script to /etc/NetworkManager/dispatcher.d/

• The NetworkManager dispatcher will execute the script (in alphabetical order if you have other
scripts in the same directory) every time there is a change in connectivity

• dnsmasq will also detect changes in your /etc/resolv.conf and automatically reload them (that
is, if you start up a VPN session for example).

• Both the nm-dnsmasq and xenDNSmasq script will also set up NAT if you have your virtualized
guests on a hidden network to allow them access to the public network.

Chapter 12.

181

Xen Para-virtualized Drivers
Para-virtualized drivers provide increased performance for fully virtualized Red Hat Enterprise Linux
guests. Use these drivers if you are using fully virtualized Red Hat Enterprise Linux guests and require
better performance.

Other para-virtualized drivers

There are other para-virtualized drivers for Windows for both Xen and KVM hypervisors.

For Windows guests on Xen hosts, refer to the Windows Para-virtualized Drivers Guide which
covers installation and administration.

For Windows guests on KVM hosts, refer to Chapter 13, KVM Para-virtualized Drivers.

The RPM packages for the para-virtualized drivers include the modules for storage and networking
para-virtualized drivers for the supported Red Hat Enterprise Linux guest operating systems. These
drivers enable high performance throughput of I/O operations in unmodified Red Hat Enterprise Linux
guest operating systems on top of a Red Hat Enterprise Linux 5.1 (or greater) host.

The supported guest operating systems are:
• Red Hat Enterprise Linux 3

• Red Hat Enterprise Linux 4

• Red Hat Enterprise Linux 5

Architecture support for para-virtualized drivers

The minimum guest operating system requirements are architecture dependent. Only x86 and
x86-64 guests are supported.

The drivers are not supported on Red Hat Enterprise Linux guest operating systems prior to Red Hat
Enterprise Linux 3 .

Using Red Hat Enterprise Linux 5 as the virtualization platform allows System Administrators to
consolidate Linux and Windows workloads onto newer, more powerful hardware with increased power
and cooling efficiency. Red Hat Enterprise Linux 4 (as of update 6) and Red Hat Enterprise Linux 5
guest operating systems are aware of the underlying virtualization technology and can interact with it
efficiently using specific interfaces and capabilities. This approach can achieve similar throughput and
performance characteristics compared to running on the bare metal system.

As para-virtualization requires a modified guest operating system, not all operating systems can use
para-virtualization. For operating systems which can not be modified, full virtualization is required.
Full virtualization, by default, uses emulated disk, network, video and other hardware devices.
Emulated I/O devices can be very slow and are not suited for applications requiring high disk and/or
network throughput. The majority of the performance loss with virtualization occurs through the use of
emulated devices.

Chapter 12. Xen Para-virtualized Drivers

182

The para-virtualized device drivers are included in the Red Hat Enterprise Linux packages. The drivers
bring many of the performance advantages of para-virtualized guest operating systems to unmodified
operating systems because only the para-virtualized device driver (but not the rest of the operating
system) is aware of the underlying virtualization platform.

After installing the para-virtualized device drivers, a disk device or network card will continue to appear
as a normal, physical disk or network card to the operating system. However, now the device driver
interacts directly with the virtualization platform (with no emulation) to efficiently deliver disk and
network access, allowing the disk and network subsystems to operate at near native speeds even in a
virtualized environment, without requiring changes to existing guest operating systems.

The para-virtualized drivers have certain host requirements. 64 bit hosts can run:
• 32 bit guests.

• 64 bit guests.

• a mixture of 32 bit and 64 bit guests.

12.1. System requirements
This section provides the requirements for para-virtualized drivers with Red Hat Enterprise Linux.

Installation
Before you install the para-virtualized drivers the following requirements (listed below) must be met.

Red Hat Enterprise Linux 4.7 and 5.3 and newer

All version of Red Hat Enterprise Linux from 4.7 and 5.3 have the kernel module for the para-
virtualized drivers, the pv-on-hvm module, in the default kernel package. That means the para-
virtualized drivers are available for Red Hat Enterprise Linux 4.7 and newer or 5.3 and newer
guests.

You will need the following RPM packages for para-virtualized drivers for each guest operating system
installation.

Minimum host operating system version:
• Red Hat Enterprise Linux 5.1 or newer.

Minimum guest operating system version:
• Red Hat Enterprise Linux 5.1 or newer.

• Red Hat Enterprise Linux 4 Update 6 or newer.

• Red Hat Enterprise Linux 3 Update 9 or newer.

Red Hat Enterprise Linux 5 requires:
• kmod-xenpv.

Red Hat Enterprise Linux 4 requires:
• kmod-xenpv,

Para-virtualization Restrictions and Support

183

• modules-init-tools (for versions prior to Red Hat Enterprise Linux 4.6z you require modules-
init-tools-3.1-0.pre5.3.4.el4_6.1 or greater), and

• modversions.

Red Hat Enterprise Linux 3 requires:
• kmod-xenpv.

You require at least 50MB of free disk space in the /lib file system.

12.2. Para-virtualization Restrictions and Support
This section outlines support restrictions and requirements for using para-virtualized drivers on Red
Hat Enterprise Linux. What we support and the restrictions put upon support can be found in the
sections below.

Supported Guest Operating Systems
Support for para-virtualized drivers is available for the following operating systems and versions:

• Red Hat Enterprise Linux 5.1 and newer.

• Red Hat Enterprise Linux 4 Update 6 and newer.

• Red Hat Enterprise Linux 3 Update 9 and newer.

You are supported for running a 32 bit guest operating system with para-virtualized drivers on 64 bit
Red Hat Enterprise Linux 5 Virtualization.

The table below indicates the kernel variants supported with the para-virtualized drivers. You can
use the command shown below to identify the exact kernel revision currently installed on your host.
Compare the output against the table to determine if it is supported.

rpm -q --queryformat '%{NAME}-%{VERSION}-%{RELEASE}.%{ARCH}\n' kernel

The Red Hat Enterprise Linux 5 i686 and x86_64 kernel variants include Symmetric
Multiprocessing(SMP), no separate SMP kernel RPM is required.

Take note of processor specific kernel requirements for Red Hat Enterprise Linux 3 Guests in the table
below.

Table 12.1. Supported guest kernel architectures for para-virtualized drivers

Kernel Architecture Red Hat Enterprise
Linux 3

Red Hat Enterprise
Linux 4

Red Hat Enterprise
Linux 5

athlon Supported (AMD)

athlon-SMP Supported (AMD)

i32e Supported (Intel)

i686 Supported (Intel) Supported Supported

i686-PAE Supported

i686-SMP Supported (Intel) Supported

i686-HUGEMEM Supported (Intel) Supported

x86_64 Supported (AMD) Supported Supported

Chapter 12. Xen Para-virtualized Drivers

184

Kernel Architecture Red Hat Enterprise
Linux 3

Red Hat Enterprise
Linux 4

Red Hat Enterprise
Linux 5

x86_64-SMP Supported (AMD) Supported

x86_64-LARGESMP Supported

Itanium (IA64) Supported

Important

The host system requires Red Hat Enterprise Linux 5.1 or newer.

Finding which kernel you are using

Write the output of the command below down or remember it. This is the value that determines
which packages and modules you need to download.

rpm -q --queryformat '%{NAME}-%{VERSION}-%{RELEASE}.%{ARCH}\n' kernel

Your output should appear similar to this:

kernel-PAE-2.6.18-53.1.4.el5.i686

The name of the kernel is PAE (an abbreviation of Physical Address Extensions), kernel version
is 2.6.18, the release is 53.1.4.el5 and the architecture is i686. The kernel rpm should always be
in the format kernel-name-version-release.arch.rpm.

Important Restrictions
Para-virtualized device drivers can be installed after successfully installing a guest operating system.
You will need a functioning host and guest before you can install these drivers.

Para-virtualized block devices and GRUB

GRUB can not presently, access para-virtualized block devices. Therefore, a guest can not be
booted from a device that uses the para-virtualized block device drivers. Specifically, the disk
that contains the Master Boot Record(MBR), a disk containing a boot loader (GRUB), or a disk
that contains the kernel initrd images. That is, any disk which contains the /boot directory or
partition can not use the para-virtualized block device drivers.

Red Hat Enterprise Linux 3 kernel variant architecture dependencies
For Red Hat Enterprise Linux 3 based guest operating systems you must use the processor specific
kernel and para-virtualized driver RPMs as seen in the tables below. If you fail to install the matching
para-virtualized driver package loading of the xen-pci-platform module will fail.

The table below shows which host kernel is required to run a Red Hat Enterprise Linux 3 guest on if
the guest was compiled for an Intel processor.

Installing the Para-virtualized Drivers

185

Table 12.2. Required host kernel architecture for guests using para-virtualized drivers on Red Hat
Enterprise Linux 3 for Intel processors

Guest kernel type Required host kernel type

ia32e (UP and SMP) x86_64

i686 i686

i686-SMP i686

i686-HUGEMEM i686

The table below shows which host kernel is required to run a Red Hat Enterprise Linux 3 guest on if
the guest was compiled for an AMD processor.

Table 12.3. Required host kernel architectures for guests using para-virtualized drivers on Red Hat
Enterprise Linux 3 for AMD processors

Guest kernel type Required host kernel type

athlon i686

athlon-SMP i686

x86_64 x86_64

x86_64-SMP x86_64

12.3. Installing the Para-virtualized Drivers
The following three chapters describe how to install and configure your fully virtualized guests to run
on Red Hat Enterprise Linux 5.1 or above with para-virtualized drivers.

Verify your architecture is supported before proceeding

Para-virtualized drivers are only supported on certain hardware and version combinations. Verify
your hardware and operating system requirements are met before proceeding to install para-
virtualized drivers.

Chapter 12. Xen Para-virtualized Drivers

186

Maximizing the benefit of the para-virtualized drivers for new
installations

If you are installing a new guest system, in order to gain maximal benefit from the para-virtualized
block device drivers, you should create the guest with at least two disks.

Using the para-virtualized drivers for the disk that contains the MBR and the boot loader (GRUB),
and for the /boot partition. This partition can be very small, as it only needs to have enough
capacity to hold the /boot partition.

Use the second disk and any additional disks for all other partitions (for example, /, /usr) or
logical volumes.

Using this installation method, when the para-virtualized block device drivers are later installed
after completing the install of the guest, only booting the guest and accessing the /boot partition
will use the virtualized block device drivers.

12.3.1. Common installation steps
The list below covers the high level steps common across all guest operating system versions.

1. Copy the RPMs for your hardware architecture to a suitable location in your guest operating
system. Your home directory is sufficient. If you do not know which RPM you require verify against
the table at Section 12.2, “Para-virtualization Restrictions and Support”.

2. Use the rpm command or the yum command to install the packages. The rpm utility will install the
following four new kernel modules into /lib/modules/[%kversion][%kvariant]/extra/
xenpv/%release:
• the PCI infrastructure module, xen_platform_pci.ko,

• the ballooning module, xen_balloon.ko,

• the virtual block device module, xen_vbd.ko,

• and the virtual network device module, xen_vnif.ko.

3. If the guest operating does not support automatically loading the para-virtualized drivers (for
example, Red Hat Enterprise Linux 3) perform the required post-install steps to copy the drivers
into the operating system specific locations.

4. Shut down your guest operating system.

5. Reconfigure the guest operating system's configuration file on the host to use the installed para-
virtualized drivers.

6. Remove the “type=ioemu” entry for the network device.

7. Add any additional disk partitions, volumes or LUNs to the guest so that they can be accessed via
the para-virtualized (xen-vbd) disk driver.

8. For each physical device, LUN, partition or volume you want to use the para-virtualized drivers
you must edit the disk entry for that device in the libvirt configuration file.

9. A typical disk entry resembles the following:

Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 3

187

<disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/dev/hda6'/>
 <target dev='hda'/>
</disk>

Modify each disk entry, as desired, to use the para-virtualized by changing the driver elements as
shown below.

<disk type='file' device='disk'>
 <driver name='tap' type='aio'/>
 <source file='/dev/hda6'/>
 <target dev='xvda'/>
</disk>

10. Add any additional storage entities you want to use for the para-virtualized block device driver.

11. Restart your guest:

xm start YourGuestName

Where YourGuestName is the name of the configuration file or the guest operating system's
name as defined in its configuration file in the name = "os_name" parameter.

12. Reconfigure the guest network.

12.3.2. Installation and Configuration of Para-virtualized Drivers on
Red Hat Enterprise Linux 3
This section contains detailed instructions for the para-virtualized drivers in a Red Hat Enterprise 3
guest operating system.

Note

These packages do not support booting from a para-virtualized disk. Booting the guest operating
system kernel still requires the use of the emulated IDE driver, while any other (non-system) user-
space applications and data can use the para-virtualized block device drivers.

Driver Installation
The list below covers the steps to install a Red Hat Enterprise Linux 3 guest with para-virtualized
drivers.

1. Install the latest kernel version. The para-virtualized drivers require at least Red Hat Enterprise
Linux 3.9 kernel version kernel-2.4.21-60.EL for all the required headers.

2. Copy the kmod-xenpv rpm for your hardware architecture and kernel variant to your guest
operating system.

3. Use the rpm utility to install the RPM packages. Ensure you have correctly identified which
package you need for your guest operating system variant and architecture.

Chapter 12. Xen Para-virtualized Drivers

188

[root@rhel3]# rpm -ivh kmod-xenpv*

4. Use the commands below load the para-virtualized driver modules. %kvariant is the kernel variant
the para-virtualized drivers have been build against and %release corresponds to the release
version of the para-virtualized drivers.

[root@rhel3]# mkdir -p /lib/modules/'uname -r'/extra/xenpv
[root@rhel3]# cp -R /lib/modules/2.4.21-52.EL[%kvariant]/extra/xenpv/%release \
/lib/modules/'uname -r'/extra/xenpv
[root@rhel3]# depmod -ae
[root@rhel3]# modprobe xen-vbd
[root@rhel3]# modprobe xen-vnif

Note

Warnings will be generated by insmod when installing the binary driver modules due to Red
Hat Enterprise Linux 3 having MODVERSIONS enabled. These warnings can be ignored.

5. Verify /etc/modules.conf and make sure you have an alias for eth0 like the one below. If you
are planning to configure multiple interfaces add an additional line for each interface.

alias eth0 xen-vnif

Edit /etc/rc.local and add the line:

insmod /lib/modules/'uname -r'/extra/xenpv/%release/xen-vbd.o

Note

Substitute “%release” with the actual release version (for example 0.1-5.el) for the para-
virtualized drivers. If you update the para-virtualized driver RPM package make sure you
update the release version to the appropriate version.

6. Shutdown the virtual machine (use “#shutdown -h now” inside the guest).

7. Edit the guest configuration file in /etc/xen/YourGuestName with a text editor, performing the
following changes:

• Remove the “type=ioemu” entry from the “vif=” entry.

• Add any additional disk partitions, volumes or LUNs to the guest so that they can be accessed
via the para-virtualized (xen-vbd) disk driver.

• For each physical device, LUN, partition or volume you want to use the para-virtualized drivers
you must edit the disk entry for that device in the libvirt configuration file.

Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 3

189

• A typical disk entry resembles the following:

<disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/dev/hda6'/>
 <target dev='hda'/>
</disk>

Modify each disk entry, as desired, to use the para-virtualized by changing the driver elements
as shown below.

<disk type='file' device='disk'>
 <driver name='tap' type='aio'/>
 <source file='/dev/hda6'/>
 <target dev='xvda'/>
</disk>

• Once complete, save the modified configuration file and restart the guest.

8. Boot the virtual machine:

xm start YourGuestName

Where YourGuestName is the name of the configuration file or the guest operating system's
name as defined in its configuration file in the name = "os_name" parameter.

Be aware

The para-virtualized drivers are not automatically added and loaded to the system because
weak-modules and modversions support is not provided in Red Hat Enterprise Linux 3. To
insert the module execute the command below.

insmod xen_vbd.ko

Red Hat Enterprise Linux 3 requires the manual creation of the special files for the block devices
which use xen-vbd. The steps below will cover how to create and register para-virtualized block
devices.

Use the following script to create the special files after the para-virtualized block device driver is
loaded.

#!/bin/sh
module="xvd"
mode="664"
major=`awk "\\$2==\"$module\" {print \\$1}" /proc/devices`
< mknod for as many or few partitions on xvd disk attached to FV guest >
change/add xvda to xvdb, xvbd, etc. for 2nd, 3rd, etc., disk added in
in xen config file, respectively.
mknod /dev/xvdb b $major 16
mknod /dev/xvdb1 b $major 17
mknod /dev/xvdb2 b $major 18
chgrp disk /dev/xvd*

Chapter 12. Xen Para-virtualized Drivers

190

chmod 0660 /dev/xvd*

For each additional virtual disk, increment the minor number by 16. In the example below an additional
device, minor number 16, is created.

mknod /dev/xvdc b $major 16
mknod /dev/xvdc1 b $major 17

This would make the next device 32 which can be created by:

mknod /dev/xvdd b $major 32
mknod /dev/xvdd1 b $major 33

Now you should verify the partitions which you have created are available.

[root@rhel3]# cat /proc/partitions
major minor #blocks name

 3 0 10485760 hda
 3 1 104391 hda1
 3 2 10377990 hda2
202 16 64000 xvdb
202 17 32000 xvdb1
202 18 32000 xvdb2
253 0 8257536 dm-0
253 1 2031616 dm-1

In the above output, you can observe that the partitioned device “xvdb” is available to the system.

The procedure below adds the new device to the guest and makes it persistent after rebooting. All
these commands are executed on the guest.

1. Create directories to mount the block device image in.

[root@rhel3]# mkdir /mnt/pvdisk_p1
[root@rhel3]# mkdir /mnt/pvdisk_p2

2. Mount the devices to the new folders.

[root@rhel3]# mount /dev/xvdb1 /mnt/pvdisk_p1
[root@rhel3]# mount /dev/xvdb2 /mnt/pvdisk_p2

3. Verify the devices are mounted correctly.

[root@rhel3]# df /mnt/pvdisk_p1
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvdb1 32000 15 31985 1% /mnt/pvdisk_p1

4. Update the /etc/fstab file inside the guest to mount the devices during the boot sequence.
Add the following lines:

/dev/xvdb1 /mnt/pvdisk_p1 ext3 defaults 1 2
/dev/xvdb2 /mnt/pvdisk_p2 ext3 defaults 1 2

Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 4

191

Performance tip

Using a Red Hat Enterprise Linux 5.1 host (dom0), the "noapic" parameter should be added to
the kernel boot line in your virtual guest's /boot/grub/grub.conf entry as seen below. Keep
in mind your architecture and kernel version may be different.

kernel /vmlinuz-2.6.9-67.EL ro root=/dev/VolGroup00/rhel4_x86_64 rhgb
noapic

A Red Hat Enterprise Linux 5.2 dom0 will not need this kernel parameter for the guest.

Important

The Itanium (ia64) binary RPM packages and builds are not presently available.

12.3.3. Installation and Configuration of Para-virtualized Drivers on
Red Hat Enterprise Linux 4
This section contains detailed instructions for the para-virtualized drivers in a Red Hat Enterprise 4
guest operating system.

Note

These packages do not support booting from a para-virtualized disk. Booting the guest operating
system kernel still requires the use of the emulated IDE driver, while any other (non-system) user-
space applications and data can use the para-virtualized block device drivers.

Driver Installation
The list below covers the steps to install a Red Hat Enterprise Linux 4 guest with para-virtualized
drivers.

1. Copy the kmod-xenpv, modules-init-tools and modversions RPMs for your hardware
architecture and kernel variant to your guest operating system.

2. Use the rpm utility to install the RPM packages. Make sure you have correctly identified which
package you need for your guest operating system variant and architecture. An updated module-
init-tools is required for this package, it is available with the Red Hat Enterprise Linux 4-6-z kernel
or newer.

[root@rhel4]# rpm -ivh modversions
[root@rhel4]# rpm -Uvh module-init-tools
[root@rhel4]# rpm -ivh kmod-xenpv*

Chapter 12. Xen Para-virtualized Drivers

192

Note

There are different packages for UP, SMP, Hugemem and architectures so make sure you
have the right RPMs for your kernel.

3. Execute cat /etc/modprobe.conf to verify you have an alias for eth0 like the one below. If
you are planning to configure multiple interfaces add an additional line for each interface. If it does
not look like the entry below change it.

alias eth0 xen-vnif

4. Shutdown the virtual machine (use “#shutdown -h now” inside the guest).

5. Edit the guest configuration file in /etc/xen/YourGuestsName in the following ways:

• Remove the “type=ioemu” entry from the “vif=” entry.

• Add any additional disk partitions, volumes or LUNs to the guest so that they can be accessed
via the para-virtualized (xen-vbd) disk driver.

• For each additional physical device, LUN, partition or volume add an entry similar to the one
shown below to the “disk=” section in the guest configuration file. The original “disk=” entry
might also look like the entry below.

disk = ["file:/var/lib/libvirt/images/rhel4_64_fv.dsk,hda,w"]

• Once you have added additional physical devices, LUNs, partitions or volumes; the para-
virtualized driver entry in your XML configuration file should resemble the entry shown below.

disk = ["file:/var/lib/libvirt/images/rhel3_64_fv.dsk,hda,w",
"tap:aio:/var/lib/libvirt/images/UserStorage.dsk,xvda,w"]

Note

Use “tap:aio” for the para-virtualized device if a file-based image is used.

6. Boot the virtual machine using the virsh command:

virsh start YourGuestName

On the first reboot of the virtual guest, kudzu will ask you to "Keep or Delete the Realtek Network
device" and "Configure the xen-bridge device". You should configure the xen-bridge and delete the
Realtek network device.

Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 4

193

Performance tip

Using a Red Hat Enterprise Linux 5.1 host (dom0), the "noapic" parameter should be added to
the kernel boot line in your virtual guest's /boot/grub/grub.conf entry as seen below. Keep
in mind your architecture and kernel version may be different.

kernel /vmlinuz-2.6.9-67.EL ro root=/dev/VolGroup00/rhel4_x86_64 rhgb
noapic

A Red Hat Enterprise Linux 5.2 dom0 will not need this kernel parameter for the guest.

Now, verify the partitions which you have created are available.

[root@rhel4]# cat /proc/partitions
major minor #blocks name

 3 0 10485760 hda
 3 1 104391 hda1
 3 2 10377990 hda2
 202 0 64000 xvdb
 202 1 32000 xvdb1
 202 2 32000 xvdb2
 253 0 8257536 dm-0
 253 1 2031616 dm-1

In the above output, you can see the partitioned device “xvdb” is available to the system.

The procedure below adds the new device to the guest and makes it persistent after rebooting. All
these commands are executed on the guest.

1. Create directories to mount the block device image in.

[root@rhel4]# mkdir /mnt/pvdisk_p1
[root@rhel4]# mkdir /mnt/pvdisk_p2

2. Mount the devices to the new folders.

[root@rhel4]# mount /dev/xvdb1 /mnt/pvdisk_p1
[root@rhel4]# mount /dev/xvdb2 /mnt/pvdisk_p2

3. Verify the devices are mounted correctly.

[root@rhel4]# df /mnt/pvdisk_p1
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvdb1 32000 15 31985 1% /mnt/pvdisk_p1

4. Update the /etc/fstab file inside the guest to mount the devices during the boot sequence.
Add the following lines:

/dev/xvdb1 /mnt/pvdisk_p1 ext3 defaults 1 2
/dev/xvdb2 /mnt/pvdisk_p2 ext3 defaults 1 2

Chapter 12. Xen Para-virtualized Drivers

194

Note

This package is not supported for Red Hat Enterprise Linux 4-GA through Red Hat Enterprise
Linux 4 update 2 systems and kernels.

Important note

IA64 binary RPM packages and builds are not presently available.

Automatic module loading

The xen-vbd driver may not automatically load. Execute the following command on the guest,
substituting %release with the correct release version for the para-virtualized drivers.

insmod /lib/modules/'uname -r'/weak-updates/xenpv/%release/xen_vbd.ko

12.3.4. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 5
This section contains detailed instructions for the para-virtualized drivers in a Red Hat Enterprise Linux
5 guest operating system.

Note

These packages do not support booting from a para-virtualized disk. Booting the guest operating
system kernel still requires the use of the emulated IDE driver, while any other (non-system) user-
space applications and data can use the para-virtualized block device drivers.

The procedure below covers the steps to enable the para-virtualized drivers for a Red Hat Enterprise
Linux 5 guest.

Procedure 12.1. Enable para-virtualized drivers for a Red Hat Enterprise Linux Guest
1. Shutdown the virtual machine (use “#shutdown -h now” inside the guest).

2. Edit the guest configuration file in /etc/xen/<Your GuestsName> in the following ways:

a. Remove the “type=ioemu” entry from the “vif=” entry.

b. Add any additional disk partitions, volumes or LUNs to the guest so that they can be
accessed via the para-virtualized (xen-vbd) disk driver.

Xen Para-virtualized Drivers on Red Hat Enterprise Linux 5

195

c. For each additional physical device, LUN, partition or volume add an entry similar to the one
shown below to the “disk=” section in the guest configuration file. The original “disk=” entry
might also look like the entry below.

disk = ["file:/var/lib/libvirt/images/rhel4_64_fv.dsk,hda,w"]

d. Once you have added additional physical devices, LUNs, partitions or volumes; the para-
virtualized driver entry in your XML configuration file should resemble the entry shown below.

disk = ["file:/var/lib/libvirt/images/rhel3_64_fv.dsk,hda,w",
"tap:aio:/var/lib/libvirt/images/UserStorage.dsk,xvda,w"]

Note

Use “tap:aio” for the para-virtualized device if a file-based image is used.

3. Boot the virtual machine using the virsh command:

virsh start YourGuestName

To verify the network interface has come up after installing the para-virtualized drivers issue the
following command on the guest. It should display the interface information including an assigned IP
address

[root@rhel5]# ifconfig eth0

Now, verify the partitions which you have created are available.

[root@rhel5]# cat /proc/partitions
major minor #blocks name
 3 0 10485760 hda
 3 1 104391 hda1
 3 2 10377990 hda2
 202 0 64000 xvdb
 202 1 32000 xvdb1
 202 2 32000 xvdb2
 253 0 8257536 dm-0
 253 1 2031616 dm-1

In the above output, you can see the partitioned device “xvdb” is available to the system.

The procedure below adds the new device to the guest and makes it persistent after rebooting. All
these commands are executed on the guest.

1. Create directories to mount the block device image in.

[root@rhel5]# mkdir /mnt/pvdisk_p1
[root@rhel5]# mkdir /mnt/pvdisk_p2

2. Mount the devices to the new folders.

Chapter 12. Xen Para-virtualized Drivers

196

[root@rhel5]# mount /dev/xvdb1 /mnt/pvdisk_p1
[root@rhel5]# mount /dev/xvdb2 /mnt/pvdisk_p2

3. Verify the devices are mounted correctly.

[root@rhel5]# df /mnt/pvdisk_p1
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvdb1 32000 15 31985 1% /mnt/pvdisk_p1

4. Update the /etc/fstab file inside the guest to mount the devices during the boot sequence.
Add the following lines:

/dev/xvdb1 /mnt/pvdisk_p1 ext3 defaults 1 2
/dev/xvdb2 /mnt/pvdisk_p2 ext3 defaults 1 2

Performance tip

Using a Red Hat Enterprise Linux 5.1 host (dom0), the "noapic" parameter should be added to
the kernel boot line in your virtual guest's /boot/grub/grub.conf entry as seen below. Keep
in mind your architecture and kernel version may be different.

kernel /vmlinuz-2.6.9-67.EL ro root=/dev/VolGroup00/rhel4_x86_64 rhgb
noapic

A Red Hat Enterprise Linux 5.2 dom0 will not need this kernel parameter for the guest.

Hiding fake interfaces
Sometimes, activating the para-virtualized drivers does not delete the old virtualized network
interfaces. To remove these interfaces from guests use the following procedure.

1. Add the following lines to the /etc/modprobe.d/blacklist file. Blacklist 8139cp and
8139too for the RealTek 8139 and e1000 for the virtualized Intel e1000 NIC.

8139cp
8139too
e1000

2. Remove the old network scripts from the /etc/sysconfig/network-scripts directory.

3. Reboot the guest. The default network interface should now use the para-virtualized drivers.

12.3.5. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 6
This section describes the use of para-virtualized drivers in a Red Hat Enterprise Linux 6 guest.

The para-virtualized drivers are enabled by default for a Red Hat Enterprise Linux 6 guest. The
guest will automatically unplug any emulated devices that are presented to it, and will use the para-
virtualized drivers instead.

Although the para-virtualized drivers are enabled by default, they can be disabled. Add the following to
the guest kernel command line upon boot to disable the para-virtualized drivers:

Para-virtualized Network Driver Configuration

197

xen_emul_unplug=never

12.4. Para-virtualized Network Driver Configuration
Once the para-virtualized network driver is loaded you may need to reconfigure the guest's network
interface to reflect the driver and virtual Ethernet card change.

Perform the following steps to reconfigure the network interface inside the guest.

1. In virt-manager open the console window for the guest and log in as root.

2. On Red Hat Enterprise Linux 4 verify the file /etc/modprobe.conf contains the line “alias
eth0 xen-vnif”.

cat /etc/modprobe.conf
alias eth0 xen-vnif

3. To display the present settings for eth0 execute “# ifconfig eth0”. If you receive an error
about the device not existing you should load the modules manually as outlined in Section 36.4,
“Manually loading the para-virtualized drivers”.

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:00:00:6A:27:3A
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:630150 errors:0 dropped:0 overruns:0 frame:0
 TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:109336431 (104.2 MiB) TX bytes:846 (846.0 b)

4. Start the network configuration utility(NetworkManager) with the command “# system-config-
network”. Click on the “Forward” button to start the network card configuration.

Chapter 12. Xen Para-virtualized Drivers

198

5. Select the 'Xen Virtual Ethernet Card (eth0)' entry and click 'Forward'.

Para-virtualized Network Driver Configuration

199

Configure the network settings as required.

Chapter 12. Xen Para-virtualized Drivers

200

6. Complete the configuration by pressing the 'Apply' button.

Para-virtualized Network Driver Configuration

201

7. Press the 'Activate' button to apply the new settings and restart the network.

Chapter 12. Xen Para-virtualized Drivers

202

8. You should now see the new network interface with an IP address assigned.

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:16:3E:49:E4:E0
 inet addr:192.168.78.180 Bcast:192.168.79.255 Mask:255.255.252.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:630150 errors:0 dropped:0 overruns:0 frame:0
 TX packets:501209 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:109336431 (104.2 MiB) TX bytes:46265452 (44.1 MiB)

12.5. Additional Para-virtualized Hardware Configuration
This section will explain how to add additional virtual network or storage to a guest operating system.
For more details on configuring network and storage resources on Red Hat Enterprise Linux 5
Virtualization read the document available on Emerging Technologies, Red Hat.com1

12.5.1. Virtualized Network Interfaces
Perform the following steps to configure additional network devices for your guest.

1 http://et.redhat.com/~jmh/docs/Installing_RHEL5_Virt.pdf

http://et.redhat.com/~jmh/docs/Installing_RHEL5_Virt.pdf
http://et.redhat.com/~jmh/docs/Installing_RHEL5_Virt.pdf

Virtual Storage Devices

203

Edit your guest configuration file in /etc/xen/YourGuestName replacing YourGuestName with the
name of your guest.

The original entry may look like the one below.

vif = ["mac=00:16:3e:2e:c5:a9,bridge=xenbr0"]

Add an additional entry to the “vif=” section of the configuration file similar to the one seen below.

vif = ["mac=00:16:3e:2e:c5:a9,bridge=xenbr0",
 "mac=00:16:3e:2f:d5:a9,bridge=xenbr0"]

Make sure you generate a unique MAC address for the new interface. You can use the command
below.

echo 'import virtinst.util ; print virtinst.util.randomMAC()' | python

After the guest has been rebooted perform the following step in the guest operating system. Verify
the update has been added to your /etc/modules.conf in Red Hat Enterprise Linux 3 or /etc/
modprobe.conf in Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux 5. Add a new alias for
each new interface you added.

alias eth1 xen-vnif

Now test that each new interface you added make sure it is available inside the guest.

ifconfig eth1

The command above should display the properties of eth1, repeat the command for eth2 if you added
a third interface, and so on.

Now configure the new network interfaces with redhat-config-network on Red Hat Enterprise
Linux 3 or system-config-network on Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux
5.

12.5.2. Virtual Storage Devices
Perform the following steps to configure additional virtual storage devices for your guest.

Edit your guest configuration file in /etc/xen/YourGuestName replacing YourGuestName with the
name of your guest. The original entry may look like the one below.

disk = ["file:/var/lib/libvirt/images/rhel5_64_fv.dsk,hda,w"]

Now, add an additional entry for your new physical device, LUN, partition or volume to the “disk=”
parameter in the configuration file. Storage entities which use the para-virtualized driver resemble the
entry below. The “tap:aio” parameter instructs the hypervisor to use the para-virtualized driver.

disk = ["file:/var/lib/libvirt/images/rhel5_64_fv.dsk,hda,w",
 "tap:aio:/var/lib/libvirt/images/UserStorage1.dsk,xvda,w"]

If you want to add more entries just add them to the “disk=” section as a comma separated list.

Chapter 12. Xen Para-virtualized Drivers

204

Note

You need to increment the letter for the 'xvd' device, that is for your second storage entity it
would be 'xvdb' instead of 'xvda'.

disk = ["file:/var/lib/libvirt/images/rhel5_64_fv.dsk,hda,w",
 "tap:aio:/var/lib/libvirt/images/UserStorage1.dsk,xvda,w",
 "tap:aio:/var/lib/libvirt/images/UserStorage2.dsk,xvdb,w"]

Verify the partitions have been created and are available.

cat /proc/partitions
major minor #blocks name
 3 0 10485760 hda
 3 1 104391 hda1
 3 2 10377990 hda2
 202 0 64000 xvda
 202 1 64000 xvdb
 253 0 8257536 dm-0
 253 1 2031616 dm-1

In the above output you can see the partition or device “xvdb” is available to the system.

Mount the new devices and disks to local mount points and update the /etc/fstab inside the guest
to mount the devices and partitions at boot time.

mkdir /mnt/pvdisk_xvda
mkdir /mnt/pvdisk_xvdb
mount /dev/xvda /mnt/pvdisk_xvda
mount /dev/xvdb /mnt/pvdisk_xvdb
df /mnt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvda 64000 15 63985 1% /mnt/pvdisk_xvda
/dev/xvdb 64000 15 63985 1% /mnt/pvdisk_xvdb

Chapter 13.

205

KVM Para-virtualized Drivers
Para-virtualized drivers are available for virtualized Windows guests running on KVM hosts. These
para-virtualized drivers are included in the virtio-win package. The virtio-win package supports block
(storage) devices and network interface controllers.

As with the KVM module, the virtio-win drivers package is only available on hosts running Red Hat
Enterprise Linux 5.4 and newer.

Para-virtualized drivers enhance the performance of fully virtualized guests. With the para-virtualized
drivers guest I/O latency decreases and throughput increases to near bare-metal levels. It is
recommended to use the para-virtualized drivers for fully virtualized guests running I/O heavy tasks
and applications.

The KVM para-virtualized drivers are automatically loaded and installed on the following versions of
Red Hat Enterprise Linux:

• Red Hat Enterprise Linux 4.8 and newer

• Red Hat Enterprise Linux 5.3 and newer

• Red Hat Enterprise Linux 6.

Those Red Hat Enterprise Linux versions detect and install the drivers so additional installation steps
are not required.

Note

PCI devices are limited by the virtualized system architecture. Out of the 32 available PCI devices
for a guest 4 are not removable. This means there are up to 28 PCI slots available for additional
devices per guest. Each PCI device can have up to 8 functions; some PCI devices have multiple
functions and only use one slot. Para-virtualized network, para-virtualized disk devices, or other
PCI devices using VT-d all use slots or functions. The exact number of devices available is
difficult to calculate due to the number of available devices. Each guest can use up to 32 PCI
devices with each device having up to 8 functions.

The following Microsoft Windows versions have supported KVM para-virtualized drivers:

• Windows XP (32-bit only)

• Windows Server 2003 (32-bit and 64-bit versions)

• Windows Server 2008 (32-bit and 64-bit versions)

• Windows 7 (32-bit and 64-bit versions)

13.1. Installing the KVM Windows para-virtualized drivers
This section covers the installation process for the KVM Windows para-virtualized drivers. The KVM
para-virtualized drivers can be loaded during the Windows installation or installed after the guest is
installed.

You can install the para-virtualized drivers on your guest by one of the following methods:

Chapter 13. KVM Para-virtualized Drivers

206

• hosting the installation files on a network accessible to the guest,

• using a virtualized CD-ROM device of the driver installation disk .iso file, or

• using a virtualized floppy device to install the drivers during boot time (for Windows guests).

This guide describes installation from the para-virtualized installer disk as a virtualized CD-ROM
device.

1. Download the drivers
The virtio-win package contains the para-virtualized block and network drivers for all supported
Windows guests.

If the Red Hat Enterprise Linux Supplementary channel entitlements are not enabled for the
system, the download will not be available. Enable the Red Hat Enterprise Linux Supplementary
channel to access the virtio-win package.

Download the virtio-win package with the yum command.

yum install virtio-win

The drivers are also available on the Red Hat Enterprise Linux Supplementary disc or from
Microsoft (windowsservercatalog.com1). Note that the Red Hat Enterprise Virtualization
Hypervisor and Red Hat Enterprise Linux are created on the same code base so the drivers for
the same version (for example, 5.5) are supported for both environments.

The virtio-win package installs a CD-ROM image, virtio-win.iso, in the /usr/share/
virtio-win/ directory.

2. Install the para-virtualized drivers
It is recommended to install the drivers on the guest before attaching or modifying a device to use
the para-virtualized drivers.

For block devices storing root file systems or other block devices required for booting the guest,
the drivers must be installed before the device is modified. If the drivers are not installed on the
guest and the driver is set to the virtio driver the guest will not boot.

Installing drivers with a virtualized CD-ROM
This procedure covers installing the para-virtualized drivers with a virtualized CD-ROM after Windows
is installed.

Follow Procedure 13.1, “Using virt-manager to mount a CD-ROM image for a Windows guest” to
add a CD-ROM image with virt-manager and then install the drivers.

Procedure 13.1. Using virt-manager to mount a CD-ROM image for a Windows guest
1. Open virt-manager and the virtualized guest

Open virt-manager, select your virtualized guest from the list by double clicking the guest
name.

2. Open the hardware tab
Click the Add Hardware button in the Hardware tab.

http://www.windowsservercatalog.com/results.aspx?text=Red+Hat&bCatID=1282&avc=10&ava=0&OR=5&=Go&chtext=&cstext=&csttext=&chbtext=

Installing the KVM Windows para-virtualized drivers

207

3. Select the device type
This opens a wizard for adding the new device. Select Storage from the dropdown menu.

Chapter 13. KVM Para-virtualized Drivers

208

Click the Forward button to proceed.

4. Select the ISO file
Choose the File (disk image) option and set the file location of the para-virtualized drivers .iso
image file. The location file is named /usr/share/virtio-win/virtio-win.iso.

If the drivers are stored on a physical CD-ROM, use the Normal Disk Partition option.

Set the Device type to IDE cdrom and click Forward to proceed.

Installing the KVM Windows para-virtualized drivers

209

5. Disc assigned
The disk has been assigned and is available for the guest once the guest is started. Click Finish
to close the wizard or back if you made a mistake.

Chapter 13. KVM Para-virtualized Drivers

210

6. Reboot
Reboot or start the guest to add the new device. Virtualized IDE devices require a restart before
they can be recognized by guests.

Once the CD-ROM with the drivers is attached and the guest has started, proceed with
Procedure 13.2, “Windows installation”.

Procedure 13.2. Windows installation
1. Open My Computer

On the Windows guest, open My Computer and select the CD-ROM drive.

Installing the KVM Windows para-virtualized drivers

211

2. Select the correct installation files
There are four files available on the disc. Select the drivers you require for your guest's
architecture:

• the para-virtualized block device driver (RHEV-Block.msi for 32-bit guests or RHEV-
Block64.msi for 64-bit guests),

• the para-virtualized network device driver (RHEV-Network.msi for 32-bit guests or RHEV-
Block64.msi for 64-bit guests),

• or both the block and network device drivers.

Double click the installation files to install the drivers.

3. Install the block device driver
a. Start the block device driver installation

Double click RHEV-Block.msi or RHEV-Block64.msi.

Chapter 13. KVM Para-virtualized Drivers

212

Press Next to continue.

b. Confirm the exception
Windows may prompt for a security exception.

Installing the KVM Windows para-virtualized drivers

213

Press Yes if it is correct.

c. Finish

Chapter 13. KVM Para-virtualized Drivers

214

Press Finish to complete the installation.

4. Install the network device driver
a. Start the network device driver installation

Double click RHEV-Network.msi or RHEV-Network64.msi.

Press Next to continue.

b. Performance setting
This screen configures advanced TCP settings for the network driver. TCP timestamps and
TCP window scaling can be enabled or disabled. The default is, 1, for window scaling to be
enabled.

TCP window scaling is covered by IETF RFC 13232. The RFC defines a method of increasing
the receive window size to a size greater than the default maximum of 65,535 bytes up to a
new maximum of 1 gigabyte (1,073,741,824 bytes). TCP window scaling allows networks to
transfer at closer to theoretical network bandwidth limits. Larger receive windows may not be
supported by some networking hardware or operating systems.

TCP timestamps are also defined by IETF RFC 13233. TCP timestamps are used to better
calculate Return Travel Time estimates by embedding timing information is embedded in
packets. TCP timestamps help the system to adapt to changing traffic levels and avoid
congestion issues on busy networks.

http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323

Installing the KVM Windows para-virtualized drivers

215

Value Action
0 Disable TCP timestamps and window scaling.

1 Enable TCP window scaling.

2 Enable TCP timestamps.

3 Enable TCP timestamps and window scaling.

Press Next to continue.

c. Confirm the exception
Windows may prompt for a security exception.

Chapter 13. KVM Para-virtualized Drivers

216

Press Yes if it is correct.

Installing drivers with a virtualized floppy disk

217

d. Finish

Press Finish to complete the installation.

5. Reboot
Reboot the guest to complete the driver installation.

Change the device configuration to use the para-virtualized drivers (Section 13.3, “Using KVM para-
virtualized drivers for existing devices”) or install a new device which uses the para-virtualized drivers
(Section 13.4, “Using KVM para-virtualized drivers for new devices”).

13.2. Installing drivers with a virtualized floppy disk
This procedure covers installing the para-virtualized drivers during a Windows installation.

Chapter 13. KVM Para-virtualized Drivers

218

• Upon installing the Windows VM for the first time using the run-once menu attach viostor.vfd
as a floppy

a. Windows Server 2003
When windows prompts to press F6 for third party drivers, do so and follow the onscreen
instructions.

b. Windows Server 2008
When the installer prompts you for the driver, click on Load Driver, point the installer to drive
A: and pick the driver that suits your guest operating system and architecture.

13.3. Using KVM para-virtualized drivers for existing
devices
Modify an existing hard disk device attached to the guest to use the virtio driver instead of
virtualized IDE driver. This example edits libvirt configuration files. Alternatively, virt-manager,
virsh attach-disk or virsh attach-interface can add a new device using the para-
virtualized drivers Section 13.4, “Using KVM para-virtualized drivers for new devices”.

1. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a
virtualized guest not using the para-virtualized drivers.

<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='vda' bus='ide'/>
</disk>

2. Change the entry to use the para-virtualized device by modifying the bus= entry to virtio.

<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='vda' bus='virtio'/>
</disk>

13.4. Using KVM para-virtualized drivers for new devices
This procedure covers creating new devices using the KVM para-virtualized drivers with virt-
manager.

Alternatively, the virsh attach-disk or virsh attach-interface commands can be used to
attach devices using the para-virtualized drivers.

Install the drivers first

Ensure the drivers have been installed on the Windows guest before proceeding to install new
devices. If the drivers are unavailable the device will not be recognized and will not work.

1. Open the virtualized guest by double clicking on the name of the guest in virt-manager.

2. Open the Hardware tab.

Using KVM para-virtualized drivers for new devices

219

3. Press the Add Hardware button.

4. In the Adding Virtual Hardware tab select Storage or Network for the type of device.

1. New disk devices

Select the storage device or file-based image. Select Virtio Disk as the Device type and
press Forward.

2. New network devices

Select Virtual network or Shared physical device. Select virtio as the Device type and
press Forward.

Chapter 13. KVM Para-virtualized Drivers

220

5. Press Finish to save the device.

Using KVM para-virtualized drivers for new devices

221

6. Reboot the guest. The device may not be recognized until the Windows guest restarts.

222

Chapter 14.

223

PCI passthrough
This chapter covers using PCI passthrough with Xen and KVM hypervisors.

KVM and Xen hypervisors support attaching PCI devices on the host system to virtualized guests.
PCI passthrough allows guests to have exclusive access to PCI devices for a range of tasks. PCI
passthrough allows PCI devices to appear and behave as if they were physically attached to the guest
operating system.

PCI devices are limited by the virtualized system architecture. Out of the 32 available PCI devices for
a guest 4 are not removable. This means there are up to 28 PCI slots available for additional devices
per guest. Each PCI device can have up to 8 functions; some PCI devices have multiple functions and
only use one slot. Para-virtualized network, para-virtualized disk devices, or other PCI devices using
VT-d all use slots or functions. The exact number of devices available is difficult to calculate due to the
number of available devices. Each guest can use up to 32 PCI devices with each device having up to
8 functions.

The VT-d or AMD IOMMU extensions must be enabled in BIOS.

Procedure 14.1. Preparing an Intel system for PCI passthrough
1. Enable the Intel VT-d extensions

The Intel VT-d extensions provides hardware support for directly assigning a physical devices to
guest. The main benefit of the feature is to improve the performance as native for device access.

The VT-d extensions are required for PCI passthrough with Red Hat Enterprise Linux. The
extensions must be enabled in the BIOS. Some system manufacturers disable these extensions
by default.

These extensions are often called various terms in BIOS which differ from manufacturer to
manufacturer. Consult your system manufacturer's documentation.

2. Activate Intel VT-d in the kernel
Activate Intel VT-d in the kernel by appending the intel_iommu=on parameter to the kernel line
of the kernel line in the /boot/grub/grub.conf file.

The example below is a modified grub.conf file with Intel VT-d activated.

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-190.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-190.el5 ro root=/dev/VolGroup00/LogVol00 intel_iommu=on
 initrd /initrd-2.6.18-190.el5.img

3. Ready to use
Reboot the system to enable the changes. Your system is now PCI passthrough capable.

Procedure 14.2. Preparing an AMD system for PCI passthrough
• Enable AMD IOMMU extensions

The AMD IOMMU extensions are required for PCI passthrough with Red Hat Enterprise Linux.
The extensions must be enabled in the BIOS. Some system manufacturers disable these
extensions by default.

AMD systems only require that the IOMMU is enabled in the BIOS. The system is ready for PCI
passthrough once the IOMMU is enabled.

Chapter 14. PCI passthrough

224

PCI passthrough with Xen

Xen and KVM require different kernel arguments to enable PCI passthrough. The previous
instructions are for KVM. For both AMD and Intel systems, PCI passthrough on Xen requires the
iommu=on parameter to the hypervisor command line. Modify the /boot/grub/grub.conf file
as follows to enable PCI passthrough:

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-192.el5)
 root (hd0,0)
 kernel /xen.gz-2.6.18-192.el5 iommu=on
 module /vmlinuz-2.6.18-192.el5xen ro root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.18-190.el5xen.img

14.1. Adding a PCI device with virsh
These steps cover adding a PCI device to a fully virtualized guest under the Xen or KVM hypervisors
using hardware-assisted PCI passthrough. Refer to Section 14.4, “PCI passthrough for para-
virtualized Xen guests on Red Hat Enterprise Linux” for details on adding a PCI device to a para-
virtualized Xen guest.

Important

The VT-d or AMD IOMMU extensions must be enabled in BIOS.

This example uses a USB controller device with the PCI identifier code, pci_8086_3a6c, and a fully
virtualized guest named win2k3.

1. Identify the device
Identify the PCI device designated for passthrough to the guest. The virsh nodedev-list
command lists all devices attached to the system. The --tree option is useful for identifying
devices attached to the PCI device (for example, disk controllers and USB controllers).

virsh nodedev-list --tree

For a list of only PCI devices, run the following command:

virsh nodedev-list | grep pci

Each PCI device is identified by a string in the following format (Where **** is a four digit
hexadecimal code):

pci_8086_****

Adding a PCI device with virsh

225

Tip: determining the PCI device

Comparing lspci output to lspci -n (which turns off name resolution) output can assist in
deriving which device has which device identifier code.

Record the PCI device number; the number is needed in other steps.

2. Information on the domain, bus and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_8086_3a6c
<device>
 <name>pci_8086_3a6c</name>
 <parent>computer</parent>
 <capability type='pci'>
 <domain>0</domain>
 <bus>0</bus>
 <slot>26</slot>
 <function>7</function>
 <id='0x3a6c'>82801JD/DO (ICH10 Family) USB2 EHCI Controller #2</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

3. Detach the device from the system. Attached devices cannot be used and may cause various
errors if connected to a guest without detaching first.

virsh nodedev-dettach pci_8086_3a6c
Device pci_8086_3a6c dettached

4. Convert slot and function values to hexadecimal values (from decimal) to get the PCI bus
addresses. Append "0x" to the beginning of the output to tell the computer that the value is a
hexadecimal number.

For example, if bus = 0, slot = 26 and function = 7 run the following:

$ printf %x 0
0
$ printf %x 26
1a
$ printf %x 7
7

The values to use:

bus='0x00'
slot='0x1a'
function='0x7'

5. Run virsh edit (or virsh attach device) and add a device entry in the <devices> section to
attach the PCI device to the guest. Only run this command on offline guests. Red Hat Enterprise
Linux does not support hotplugging PCI devices at this time.

Chapter 14. PCI passthrough

226

virsh edit win2k3
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0000' bus='0x00' slot='0x1a' function='0x7'/>
 </source>
</hostdev>

6. Once the guest system is configured to use the PCI address, we need to tell the host system to
stop using it. The ehci driver is loaded by default for the USB PCI controller.

$ readlink /sys/bus/pci/devices/0000\:00\:1d.7/driver
../../../bus/pci/drivers/ehci_hcd

7. Detach the device:

$ virsh nodedev-dettach pci_8086_3a6c

8. Verify it is now under the control of pci_stub:

$ readlink /sys/bus/pci/devices/0000\:00\:1d.7/driver
../../../bus/pci/drivers/pci-stub

9. Set a sebool to allow the management of the PCI device from the guest:

setsebool -P virt_use_sysfs 1

10. Start the guest system :

virsh start win2k3

The PCI device should now be successfully attached to the guest and accessible to the guest
operating system.

14.2. Adding a PCI device with virt-manager
PCI devices can be added to guests using the graphical virt-manager tool. The following procedure
adds a 2 port USB controller to a virtualized guest.

1. Identify the device
Identify the PCI device designated for passthrough to the guest. The virsh nodedev-list
command lists all devices attached to the system. The --tree option is useful for identifying
devices attached to the PCI device (for example, disk controllers and USB controllers).

virsh nodedev-list --tree

For a list of only PCI devices, run the following command:

virsh nodedev-list | grep pci

Each PCI device is identified by a string in the following format (Where **** is a four digit
hexadecimal code):

Adding a PCI device with virt-manager

227

pci_8086_****

Tip: determining the PCI device

Comparing lspci output to lspci -n (which turns off name resolution) output can assist in
deriving which device has which device identifier code.

Record the PCI device number; the number is needed in other steps.

2. Detach the PCI device
Detach the device from the system.

virsh nodedev-dettach pci_8086_3a6c
Device pci_8086_3a6c dettached

3. Power off the guest
Power off the guest. Hotplugging PCI devices into guests is presently unsupported and may fail or
crash.

4. Open the hardware settings
Open the virtual machine and select the Hardware tab. Click the Add Hardware button to add a
new device to the guest.

Chapter 14. PCI passthrough

228

5. Add the new device
Select Physical Host Device from the Hardware type list. The Physical Host Device represents
PCI devices. Click Forward to continue.

Adding a PCI device with virt-manager

229

6. Select a PCI device
Select an unused PCI device. Note that selecting PCI devices presently in use on the host causes
errors. In this example a PCI to USB interface device is used.

Chapter 14. PCI passthrough

230

7. Confirm the new device
Click the Finish button to confirm the device setup and add the device to the guest.

PCI passthrough with virt-install

231

The setup is complete and the guest can now use the PCI device.

14.3. PCI passthrough with virt-install
To use PCI passthrough with the virt-install parameter, use the additional --host-device parameter.

1. Identify the PCI device
Identify the PCI device designated for passthrough to the guest. The virsh nodedev-list
command lists all devices attached to the system. The --tree option is useful for identifying
devices attached to the PCI device (for example, disk controllers and USB controllers).

Chapter 14. PCI passthrough

232

virsh nodedev-list --tree

For a list of only PCI devices, run the following command:

virsh nodedev-list | grep pci

Each PCI device is identified by a string in the following format (Where **** is a four digit
hexadecimal code):

pci_8086_****

Tip: determining the PCI device

Comparing lspci output to lspci -n (which turns off name resolution) output can assist in
deriving which device has which device identifier code.

2. Add the device
Use the PCI identifier output from the virsh nodedev command as the value for the --host-
device parameter.

virt-install \
 -n hostdev-test -r 1024 --vcpus 2 \
 --os-variant fedora11 -v --accelerate \
 -l http://download.fedoraproject.org/pub/fedora/linux/development/x86_64/os \
 -x 'console=ttyS0 vnc' --nonetworks --nographics \
 --disk pool=default,size=8 \
 --debug --host-device=pci_8086_10bd

3. Complete the installation
Complete the guest installation. The PCI device should be attached to the guest.

14.4. PCI passthrough for para-virtualized Xen guests on
Red Hat Enterprise Linux
PCI passthrough is used to allow a Xen guest exclusive access to a PCI device, rather than sharing
with other guests or with dom0. PCI passthrough for para-virtualized Xen guests is supported on all
Red Hat Enterprise Linux 5 systems, however PCI passthrough with fully virtualized guests is only
supported on Red Hat Enterprise Linux 5.4 and newer.

Warning

PCI passthrough to para-virtualized guests is considered insecure and is not supported for Red
Hat Enterprise Linux 6 guests.

PCI passthrough for para-virtualized Xen guests on Red Hat Enterprise Linux

233

Limitations of Xen PCI passthrough:
Any guest using PCI passthrough will no longer be available for save, restore, or migration
capabilities, as it will be tied to a particular non-virtualized hardware configuration.

A guest which has access to a non-virtualized PCI device via PCI passthrough also has the potential
to access the DMA address space of dom0, which is a potential security concern.

To link a PCI device to a guest the device must first be hidden from the host. If the host is using the
device the device cannot be assigned to the guest.

Procedure 14.3. Example: attaching a PCI device
1. Given a network device which uses the bnx2 driver and has a PCI id of 0000:09:00.0, the

following lines added to /etc/modprobe.conf hides the device from dom0. Either the bnx2
module must be reloaded or the host must be restarted.

install bnx2 /sbin/modprobe pciback; /sbin/modprobe --first-time --ignore-install bnx2
options pciback hide=(0000:09:00.0)

2. Multiple PCI identifiers can be added to /etc/modprobe.conf to hide multiple devices.

options pciback hide=(0000:09:00.0)(0000:0a:04.1)

3. Use one of the following methods to add the passed-through device to the guest's configuration
file:
• virsh (Section 14.1, “Adding a PCI device with virsh” - Step 5);

• virt-manager (Section 14.2, “Adding a PCI device with virt-manager”); or

• virt-install (Section 14.3, “PCI passthrough with virt-install”)

234

Chapter 15.

235

SR-IOV

15.1. Introduction
The PCI-SIG (PCI Special Interest Group) developed the Single Root I/O Virtualization (SR-IOV)
specification. The PCI-SIG Single Root IOV specification is a standard for a type of PCI passthrough
which natively shares a single device to multiple guests. SR-IOV does not require hypervisor
involvement in data transfer and management by providing an independent memory space, interrupts,
and DMA streams for virtualized guests.

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear
in the PCI configuration space as multiple functions, each device has its own configuration space
complete with Base Address Registers (BARs).

SR-IOV uses two new PCI functions:

• Physical Functions (PFs) are full PCIe devices that include the SR-IOV capabilities. Physical
Functions are discovered, managed, and configured as normal PCI devices. Physical Functions
configure and manage the SR-IOV functionality by assigning Virtual Functions.

• Virtual Functions (VFs) are simple PCIe functions that only process I/O. Each Virtual Function is
derived from a Physical Function. The number of Virtual Functions a device may have is limited
by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual
Functions that can be shared to virtualized guests.

The hypervisor can map one or more Virtual Functions to a virtualized guest. The Virtual Function's
configuration space is mapped, by the hypervisor, to the virtualized guest's configuration space.

Each Virtual Function can only be mapped once as Virtual Functions require real hardware. A
virtualized guest can have multiple Virtual Functions. A Virtual Function appears as a network card in
the same way as a normal network card would appear to an operating system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual
Function (VF) devices. With an SR-IOV capable device one can allocate VFs from a PF. The VFs
appear as PCI devices which are backed on the physical PCI device by resources (queues, and
register sets).

Advantages of SR-IOV
SR-IOV devices can share a single physical port with multiple virtualized guests.

Virtual Functions have near-native performance and provide better performance than para-virtualized
drivers and emulated access. Virtual Functions provide data protection between virtualized guests on
the same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtualized guest density on hosts within a data center.

Disadvantages of SR-IOV
Live migration is presently unsupported. As with PCI passthrough, identical device configurations are
required for live (and offline) migrations. Without identical device configurations, guest's cannot access
the passed-through devices after migrating.

Chapter 15. SR-IOV

236

15.2. Using SR-IOV
This section covers attaching Virtual Function to a guest as an additional network device.

SR-IOV requires Intel VT-d support.

SR-IOV with Xen

Xen requires additional kernel arguments to use SR-IOV. Modify the /boot/grub/
grub.conf file to enable SR-IOV. To enable SR-IOV with Xen for Intel systems append the
pci_pt_e820_access=on parameter to the kernel.

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-192.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.18-192.el5 iommu=1
 module /vmlinuz-2.6.18-192.el5xen ro root=/dev/VolGroup00/LogVol00
 pci_pt_e820_access=on
 module /initrd-2.6.18-192.el5xen.img

Procedure 15.1. Attach an SR-IOV network device
1. Enable Intel VT-d in BIOS and in the kernel

Enable Intel VT-D in BIOS. Refer to Procedure 14.1, “Preparing an Intel system for PCI
passthrough” for more information on enabling Intel VT-d in BIOS and the kernel, or refer to your
system manufacturer's documentation for specific instructions.

2. Verify support
Verify if the PCI device with SR-IOV capabilities are detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the lspci command to verify if the device
was detected.

lspci
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

Note

Note that the output has been modified to remove all other devices.

3. Start the SR-IOV kernel modules
If the device is supported the driver kernel module should be loaded automatically by the kernel.
Optional parameters can be passed to the module using the modprobe command. The Intel
82576 network interface card uses the igb driver kernel module.

modprobe igb [<option>=<VAL1>,<VAL2>,]

Using SR-IOV

237

lsmod |grep igb
igb 87592 0
dca 6708 1 igb

4. Activate Virtual Functions
The max_vfs parameter of the igb module allocates the maximum number of Virtual Functions.
The max_vfs parameter causes the driver to spawn, up to the value of the parameter in, Virtual
Functions. For this particular card the valid range is 0 to 7.

Remove the module to change the variable.

modprobe -r igb

Restart the module with the max_vfs set to 1 or any number of Virtual Functions up to the
maximum supported by your device.

modprobe igb max_vfs=1

5. Inspect the new Virtual Functions
Using the lspci command, list the newly added Virtual Functions attached to the Intel 82576
network device.

lspci | grep 82576
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
03:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
03:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

The identifier for the PCI device is found with the -n parameter of the lspci command.

lspci -n | grep 03:00.0
03:00.0 0200: 8086:10c9 (rev 01)
lspci -n | grep 03:10.0
03:10.0 0200: 8086:10ca (rev 01)

The Physical Function corresponds to 8086:10c9 and the Virtual Function to 8086:10ca.

6. Find the devices with virsh
The libvirt service must find the device to add a device to a guest. Use the virsh nodedev-
list command to list available host devices.

virsh nodedev-list | grep 8086
pci_8086_10c9
pci_8086_10c9_0
pci_8086_10ca
pci_8086_10ca_0
[output truncated]

The serial numbers for the Virtual Functions and Physical Functions should be in the list.

7. Get advanced details
The pci_8086_10c9 is one of the Physical Functions and pci_8086_10ca_0 is the first
corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml
command to get advanced output for both devices.

Chapter 15. SR-IOV

238

virsh nodedev-dumpxml pci_8086_10ca
virsh nodedev-dumpxml pci_8086_10ca_0
<device>
 <name>pci_8086_10ca_0</name>
 <parent>pci_8086_3408</parent>
 <driver>
 <name>igbvf</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>3</bus>
 <slot>16</slot>
 <function>1</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

This example adds the Virtual Function pci_8086_10ca_0 to the guest in Step 8. Note the bus,
slot and function parameters of the Virtual Function, these are required for adding the device.

8. Add the Virtual Function to the guest
a. Shut down the guest.

b. Use the output from the virsh nodedev-dumpxml pci_8086_10ca_0 command to
calculate the values for the configuration file. Convert slot and function values to hexadecimal
values (from decimal) to get the PCI bus addresses. Append "0x" to the beginning of the
output to tell the computer that the value is a hexadecimal number.

The example device has the following values: bus = 3, slot = 16 and function = 1. Use the
printf utility to convert decimal values to hexadecimal values.

$ printf %x 3
3
$ printf %x 16
10
$ printf %x 1
1

This example would use the following values in the configuration file:

bus='0x03'
slot='0x10'
function='0x01'

c. Open the XML configuration file with the virsh edit command. This example edits a guest
named MyGuest.

virsh edit MyGuest

d. The default text editor will open the libvirt configuration file for the guest. Add the new device
to the devices section of the XML configuration file.

<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address bus='0x03' slot='0x10' function='0x01'/>
 </source>

Troubleshooting SR-IOV

239

</hostdev>

e. Save the configuration.

9. Restart
Restart the guest to complete the installation.

virsh start MyGuest

The guest should start successfully and detect a new network interface card. This new card is the
Virtual Function of the SR-IOV device.

15.3. Troubleshooting SR-IOV
This section contains some issues and solutions for problems which may affect SR-IOV.

Error starting the guest
Start the configured vm , an error reported as follows:

virsh start test
error: Failed to start domain test
error: internal error unable to start guest: char device redirected to
/dev/pts/2
get_real_device: /sys/bus/pci/devices/0000:03:10.0/config: Permission denied
init_assigned_device: Error: Couldn't get real device (03:10.0)!
Failed to initialize assigned device host=03:10.0

This error is often caused by a device which is already assigned to another guest or to the host itself.

240

Chapter 16.

241

KVM guest timing management
Virtualization poses various challenges for guest time keeping. Guests which use the Time Stamp
Counter (TSC) as a clock source may suffer timing issues as some CPUs do not have a constant
Time Stamp Counter. Guests without accurate timekeeping may have issues with some networked
applications and processes as the guest will run faster or slower than the actual time and fall out of
synchronization.

KVM works around this issue by providing guests with a para-virtualized clock. Alternatively, some
guests may use other x86 clock sources for their timing in future versions of those operating systems.

Presently, only Red Hat Enterprise Linux 5.4 and newer guests fully support the para-virtualized clock.

Guests can have several problems caused by inaccurate clocks and counters:

• Clocks can fall out of synchronization with the actual time which invalidates sessions and affects
networks.

• Guests with slower clocks may have issues migrating.

These problems exist on other virtualization platforms and timing should always be tested.

NTP

The Network Time Protocol (NTP) daemon should be running on the host and the guests. Enable
the ntpd service:

service ntpd start

Add the ntpd service to the default startup sequence:

chkconfig ntpd on

Using the ntpd service should minimize the affects of clock skew in all cases.

Determining if your CPU has the constant Time Stamp Counter
Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if
your CPU has the constant_tsc flag run the following command:

$ cat /proc/cpuinfo | grep constant_tsc

If any output is given your CPU has the constant_tsc bit. If no output is given follow the instructions
below.

Configuring hosts without a constant Time Stamp Counter
Systems without constant time stamp counters require additional configuration. Power management
features interfere with accurate time keeping and must be disabled for guests to accurately keep time
with KVM.

Chapter 16. KVM guest timing management

242

Note

These instructions are for AMD revision F cpus only.

If the CPU lacks the constant_tsc bit, disable all power management features (BZ#5131381).
Each system has several timers it uses to keep time. The TSC is not stable on the host, which
is sometimes caused by cpufreq changes, deep C state, or migration to a host with a faster
TSC. Deep C sleep states can stop the TSC. To prevent the kernel using deep C states append
"processor.max_cstate=1" to the kernel boot options in the grub.conf file on the host:

term Red Hat Enterprise Linux Server (2.6.18-159.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-159.el5 ro root=/dev/VolGroup00/LogVol00 rhgb
 quiet processor.max_cstate=1

Disable cpufreq (only necessary on hosts without the constant_tsc) by editing the /etc/
sysconfig/cpuspeed configuration file and change the MIN_SPEED and MAX_SPEED variables
to the highest frequency available. Valid limits can be found in the /sys/devices/system/cpu/
cpu*/cpufreq/scaling_available_frequencies files.

Using the para-virtualized clock with Red Hat Enterprise Linux guests
For certain Red Hat Enterprise Linux guests, additional kernel parameters are required. These
parameters can be set by appending them to the end of the /kernel line in the /boot/grub/grub.conf file
of the guest.

The table below lists versions of Red Hat Enterprise Linux and the parameters required for guests on
systems without a constant Time Stamp Counter.

Red Hat Enterprise Linux Additional guest kernel parameters
5.4 AMD64/Intel 64 with the
para-virtualized clock

Additional parameters are not required

5.4 AMD64/Intel 64 without the
para-virtualized clock

divider=10 notsc lpj=n

5.4 x86 with the para-virtualized
clock

Additional parameters are not required

5.4 x86 without the para-
virtualized clock

divider=10 clocksource=acpi_pm lpj=n

5.3 AMD64/Intel 64 divider=10 notsc

5.3 x86 divider=10 clocksource=acpi_pm

4.8 AMD64/Intel 64 notsc divider=10

4.8 x86 clock=pmtmr divider=10

3.9 AMD64/Intel 64 Additional parameters are not required

3.9 x86 Additional parameters are not required

1 https://bugzilla.redhat.com/show_bug.cgi?id=513138

https://bugzilla.redhat.com/show_bug.cgi?id=513138
https://bugzilla.redhat.com/show_bug.cgi?id=513138

243

Using the Real-Time Clock with Windows Server 2003 and Windows XP guests
Windows uses the both the Real-Time Clock (RTC) and the Time Stamp Counter (TSC). For Windows
guests the Real-Time Clock can be used instead of the TSC for all time sources which resolves guest
timing issues.

To enable the Real-Time Clock for the PMTIMER clocksource (the PMTIMER usually uses the TSC)
add the following line to the Windows boot settings. Windows boot settings are stored in the boot.ini
file. Add the following line to the boot.ini file:

/use pmtimer

For more information on Windows boot settings and the pmtimer option, refer to Available switch
options for the Windows XP and the Windows Server 2003 Boot.ini files2.

Using the Real-Time Clock with Windows Vista, Windows Server 2008 and Windows 7
guests
Windows uses the both the Real-Time Clock (RTC) and the Time Stamp Counter (TSC). For Windows
guests the Real-Time Clock can be used instead of the TSC for all time sources which resolves guest
timing issues.

The boot.ini file is no longer used from Windows Vista and newer. Windows Vista, Windows
Server 2008 and Windows 7 use the Boot Configuration Data Editor (bcdedit.exe) to modify the
Windows boot parameters.

This procedure is only required if the guest is having time keeping issues. Time keeping issues may
not affect guests on all host systems.

1. Open the Windows guest.

2. Open the Accessories menu of the start menu. Right click on the Command Prompt
application, select Run as Administrator.

3. Confirm the security exception, if prompted.

4. Set the boot manager to use the platform clock. This should instruct Windows to use the PM timer
for the primary clock source. The system UUID ({default} in the example below) should be
changed if the system UUID is different than the default boot device.

C:\Windows\system32>bcdedit /set {default} USEPLATFORMCLOCK on
The operation completed successfully

This fix should improve time keeping for Windows Vista, Windows Server 2008 and Windows 7
guests.

2 http://support.microsoft.com/kb/833721

http://support.microsoft.com/kb/833721
http://support.microsoft.com/kb/833721
http://support.microsoft.com/kb/833721

244

Part IV. Administration

Administering virtualized systems
These chapters contain information for administering host and virtualized guests using tools included
in Red Hat Enterprise Linux.

Chapter 17.

247

Server best practices
The following tasks and tips can assist you with securing and ensuring reliability of your Red Hat
Enterprise Linux 5 server host (dom0).

• Run SELinux in enforcing mode. You can do this by executing the command below.

setenforce 1

• Remove or disable any unnecessary services such as AutoFS, NFS, FTP, HTTP, NIS, telnetd,
sendmail and so on.

• Only add the minimum number of user accounts needed for platform management on the server
and remove unnecessary user accounts.

• Avoid running any unessential applications on your host. Running applications on the host may
impact virtual machine performance and can affect server stability. Any application which may crash
the server will also cause all virtual machines on the server to go down.

• Use a central location for virtual machine installations and images. Virtual machine images should
be stored under /var/lib/libvirt/images/. If you are using a different directory for your
virtual machine images make sure you add the directory to your SELinux policy and relabel it before
starting the installation.

• Installation sources, trees, and images should be stored in a central location, usually the location of
your vsftpd server.

248

Chapter 18.

249

Security for virtualization
When deploying virtualization technologies on your corporate infrastructure, you must ensure that the
host cannot be compromised. The host, in the Xen hypervisor, is a privileged domain that handles
system management and manages all virtual machines. If the host is insecure, all other domains in the
system are vulnerable. There are several ways to enhance security on systems using virtualization.
You or your organization should create a Deployment Plan containing the operating specifications
and specifies which services are needed on your virtualized guests and host servers as well as what
support is required for these services. Here are a few security issues to consider while developing a
deployment plan:

• Run only necessary services on hosts. The fewer processes and services running on the host, the
higher the level of security and performance.

• Enable Security-Enhanced Linux (SELinux) on the hypervisor. Read Section 18.2, “SELinux and
virtualization” for more information on using SELinux and virtualization.

• Use a firewall to restrict traffic to dom0. You can setup a firewall with default-reject rules that will
help secure attacks on dom0. It is also important to limit network facing services.

• Do not allow normal users to access dom0. If you do permit normal users dom0 access, you run
the risk of rendering dom0 vulnerable. Remember, dom0 is privileged, and granting unprivileged
accounts may compromise the level of security.

18.1. Storage security issues
Administrators of virtualized guests can change the partitions the host boots in certain circumstances.
To prevent this administrators should follow these recommendations:

The host should not use disk labels to identify file systems in the fstab file, the initrd file or used
by the kernel command line. If less privileged users, especially virtualized guests, have write access to
whole partitions or LVM volumes.

Guest should not be given write access to whole disks or block devices (for example, /dev/sdb). Use
partitions (for example, /dev/sdb1) or LVM volumes.

18.2. SELinux and virtualization
Security Enhanced Linux was developed by the NSA with assistance from the Linux community to
provide stronger security for Linux. SELinux limits an attackers abilities and works to prevent many
common security exploits such as buffer overflow attacks and privilege escalation. It is because
of these benefits that Red Hat recommends all Red Hat Enterprise Linux systems should run with
SELinux enabled and in enforcing mode.

SELinux prevents guest images from loading if SELinux is enabled and the images are not correctly
labeled. SELinux requires that image files have the virt_image_t label applied to them. The /var/
lib/libvirt/images directory has this label applied to it and its contents by default. This does not
mean that images must be stored in this directory; images can be stored anywhere, provided they are
labeled with virt_image_t.

Adding LVM based storage with SELinux in enforcing mode
The following section is an example of adding a logical volume to a virtualized guest with SELinux
enabled. These instructions also work for hard drive partitions.

Chapter 18. Security for virtualization

250

Procedure 18.1. Creating and mounting a logical volume on a virtualized guest with SELinux enabled
1. Create a logical volume. This example creates a 5 gigabyte logical volume named

NewVolumeName on the volume group named volumegroup.

lvcreate -n NewVolumeName -L 5G volumegroup

2. Format the NewVolumeName logical volume with a file system that supports extended attributes,
such as ext3.

mke2fs -j /dev/volumegroup/NewVolumeName

3. Create a new directory for mounting the new logical volume. This directory can be anywhere on
your file system. It is advised not to put it in important system directories (/etc, /var, /sys) or in
home directories (/home or /root). This example uses a directory called /virtstorage

mkdir /virtstorage

4. Mount the logical volume.

mount /dev/volumegroup/NewVolumeName /virtstorage

5. Set the correct SELinux type for a Xen folder.

semanage fcontext -a -t xen_image_t "/virtstorage(/.*)?"

Alternatively, set the correct SELinux type for a KVM folder.

semanage fcontext -a -t virt_image_t "/virtstorage(/.*)?"

If the targeted policy is used (targeted is the default policy) the command appends a line to the /
etc/selinux/targeted/contexts/files/file_contexts.local file which makes the
change persistent. The appended line may resemble this:

/virtstorage(/.*)? system_u:object_r:xen_image_t:s0

6. Label the device node (for example, /dev/volumegroup/NewVolumeName with the correct
label:

semanage fcontext -a -t xen_image_t /dev/volumegroup/NewVolumeName
restorecon /dev/volumegroup/NewVolumeName

18.3. SELinux
This sections contains topics to consider when using SELinux with your virtualization deployment.
When you deploy system changes or add devices, you must update your SELinux policy accordingly.
To configure an LVM volume for a guest, you must modify the SELinux context for the respective
underlying block device and volume group.

semanage fcontext -a -t xen_image_t -f -b /dev/sda2

Virtualization firewall information

251

restorecon /dev/sda2

The Boolean parameter xend_disable_t can set the xend to unconfined mode after restarting the
daemon. It is better to disable protection for a single daemon than the whole system. It is advisable
that you should not re-label directories as xen_image_t that you will use elsewhere.

KVM and SELinux
There are several SELinux booleans which affect KVM. These booleans are listed below for your
convenience.

KVM SELinux Booleans
SELinux Boolean Description
allow_unconfined_qemu_transitionDefault: off. This boolean controls whether KVM guests can be

transitioned to unconfined users.

qemu_full_network Default: on. This boolean controls full network access to KVM
guests.

qemu_use_cifs Default: on. This boolean controls KVM's access to CIFS or
Samba file systems.

qemu_use_comm Default: off. This boolean controls whether KVM can access serial
or parallel communications ports.

qemu_use_nfs Default: on. This boolean controls KVM's access to NFS file
systems.

qemu_use_usb Default: on. This boolean allows KVM to access USB devices.

18.4. Virtualization firewall information
Various ports are used for communication between virtualized guests and management utilities.

Guest network services

Any network service on a virtualized guest must have the applicable ports open on the guest to
allow external access. If a network service on a guest is firewalled it will be inaccessible. Always
verify the guests network configuration first.

• ICMP requests must be accepted. ICMP packets are used for network testing. You cannot ping
guests if ICMP packets are blocked.

• Port 22 should be open for SSH access and the initial installation.

• Ports 80 or 443 (depending on the security settings on the RHEV Manager) are used by the vdsm-
reg service to communicate information about the host.

• Ports 5634 to 6166 are used for guest console access with the SPICE protocol.

• Port 8002 is used by Xen for live migration.

• Ports 49152 to 49216 are used for migrations with KVM. Migration may use any port in this range
depending on the number of concurrent migrations occurring.

Chapter 18. Security for virtualization

252

• Enabling IP forwarding (net.ipv4.ip_forward = 1) is required for virtual bridge devices. Note
that installing libvirt enables this variable so it will be enabled when the virtualization packages are
installed unless it was manually disabled.

Note

Note that enabling IP forwarding is not required for physical bridge devices. When a guest is
connected through a physical bridge, traffic only operates at a level that does not require IP
configuration such as IP forwarding.

Chapter 19.

253

Managing guests with xend
The xend node control daemon performs certain system management functions that relate to virtual
machines. This daemon controls the virtualized resources, and xend must be running to interact with
virtual machines. Before you start xend, you must specify the operating parameters by editing the
xend configuration file /etc/xen/xend-config.sxp. Here are the parameters you can enable or
disable in the xend-config.sxp configuration file:

Table 19.1. xend configuration parameters

Item Description

(console-limit) Determines the console server's memory buffer
limit and assigns that limit on a per domain basis.

(min-mem) Determines the minimum number of megabytes
that is reserved for domain0 (if you enter 0, the
value does not change).

(dom0-cpus) Determines the number of CPUs in use by
domain0 (at least 1 CPU is assigned by default).

(enable-dump) If this is enabled, when a crash occurs Xen
creates a dump file (the default is 0).

(external-migration-tool) Determines the script or application that handles
external device migration. The scripts must
reside in the /etc/xen/scripts/external-
device-migrate directory.

(logfile) Determines the location of the log file (default is
/var/log/xend.log).

(loglevel) Filters out the log mode values: DEBUG, INFO,
WARNING, ERROR, or CRITICAL (default is
DEBUG).

(network-script) Determines the script that enables the
networking environment. The scripts must reside
in the /etc/xen/scripts/ directory.

(xend-http-server) Enables the http stream packet management
server (the default is no).

(xend-unix-server) Enables the UNIX domain socket server. The
socket server is a communications endpoint
that handles low level network connections and
accepts or rejects incoming connections. The
default value is set to yes.

(xend-relocation-server) Enables the relocation server for cross-machine
migrations (the default is no).

(xend-unix-path) Determines the location where the xend-unix-
server command outputs data (default is /
var/lib/xend/xend-socket)

(xend-port) Determines the port that the http management
server uses (the default is 8000).

(xend-relocation-port) Determines the port that the relocation server
uses (the default is 8002).

Chapter 19. Managing guests with xend

254

Item Description

(xend-relocation-address) Determines the host addresses allowed for
migration. The default value is the value of
xend-address.

(xend-address) Determines the address that the domain socket
server binds to. The default value allows all
connections.

After setting these operating parameters, you should verify that xend is running and if not, initialize the
daemon. At the command prompt, you can start the xend daemon by entering the following:

service xend start

You can use xend to stop the daemon:

service xend stop

This stops the daemon from running.

You can use xend to restart the daemon:

service xend restart

The daemon starts once again.

You check the status of the xend daemon.

service xend status

The output displays the daemon's status.

Enabling xend at boot time

Use the chkconfig command to add the xend to the initscript.

chkconfig --level 345 xend

The xend will now start at runlevels 3, 4 and 5.

Chapter 20.

255

Xen live migration
The Xen hypervisor supports Virtualization Migration for para-virtualized guests and fully virtualized
guests. Migration is only supported on Red Hat Enterprise Linux 5.1 and newer systems. Migration
can be performed offline or live.

• Offline migration suspends the virtualized guest on the original host, transfers it to the destination
host and then resumes it once the guest is fully transferred. Offline migration uses the virsh
migrate command.

virsh migrate GuestName libvirtURI

• A live migration keeps the guest running on the source host and begins moving the memory
without stopping the guest. All modified memory pages are monitored for changes and sent to the
destination while the image is sent. The memory is updated with the changed pages. The process
continues until the amount of pause time allowed for the guest equals the predicted time for the final
few pages to be transfer. The Xen hypervisor estimates the time remaining and attempts to transfer
the maximum amount of page files from the source to the destination until Xen predicts the amount
of remaining pages can be transferred during a very brief time while the virtualized guest is paused.
The registers are loaded on the new host and the guest is then resumed on the destination host.
If the guest cannot be merged (which happens when guests are under extreme loads) the guest is
paused and then an offline migration is started instead.

Live migration uses the --live option for the virsh migrate command.

virsh migrate--live GuestName libvirtURI

Itanium® support note

Migration is presently unsupported on the Itanium® architecture.

To enable migration with Xen a few changes must be made to the /etc/xen/xend-config.sxp
configuration file. By default, migration is disabled as migration can be a potential security hazard
if incorrectly configured. Opening the migration port can allow an unauthorized host to initiate a
migration or connect to the migration ports. Authentication and authorization are not configured for
migration requests and the only control mechanism is based on hostnames and IP addresses. Special
care should be taken to ensure the migration port is not accessible to unauthorized hosts.

Virtualization migration security

IP address and hostname filters only offer minimal security. Both of these attributes can be
forged if the attacker knows the address or hostname of the migration client. The best method for
securing migration is to isolate the network from external and unauthorized internal connections.

Chapter 20. Xen live migration

256

Enabling migration
Modify the following entries in /etc/xen/xend-config.sxp to enable migration. Modify the values,
when necessary, and remove the comments (the # symbol) preceding the following parameters:

(xend-relocation-server yes)
The default value, which disables migration, is no. Change the value of xend-relocation-
server to yes to enable migration.

(xend-relocation-port 8002)
The parameter, (xend-relocation-port), specifies the port xend should use for the
relocation interface, if xend-relocation-server is set to yes

The default value of this variable should work for most installations. If you change the value make
sure you are using an unused port on the relocation server.

The port set by the xend-relocation-port parameter must be open on both systems.

(xend-relocation-address '')
(xend-relocation-address) is the address the xend listens for migration commands on the
relocation-socket connection if xend-relocation-server is set.

The default is to listen on all active interfaces. The (xend-relocation-address) parameter
restricts the migration server to only listen to a specific interface. The default value in /etc/xen/
xend-config.sxp is an empty string(''). This value should be replaced with a single, valid IP
address. For example:

(xend-relocation-address '10.0.0.1')

(xend-relocation-hosts-allow '')
The (xend-relocation-hosts-allow 'hosts') parameter controls which hostnames can
communicate on the relocation port.

Unless you are using SSH or TLS, the guest's virtual memory is transferred in raw form without
encryption of the communication. Modify the xend-relocation-hosts-allow option to restrict
access to the migration server.

If the value is empty, as denoted in the example above by an empty string surrounded by single
quotes, then all connections are allowed. This assumes the connection arrives on a port and
interface which the relocation server listens on, see also xend-relocation-port and xend-
relocation-address.

Otherwise, the (xend-relocation-hosts-allow) parameter should be a sequence of regular
expressions separated by spaces. Any host with a fully-qualified domain name or an IP address
which matches one of these regular expressions will be accepted.

An example of a (xend-relocation-hosts-allow) attribute:

(xend-relocation-hosts-allow '^localhost$ ^localhost\\.localdomain$')

After you have configured the parameters in your configuration file, restart the Xen service.

service xend restart

A live migration example

257

20.1. A live migration example
Below is an example of how to setup a simple environment for live migration. This configuration is
using NFS for the shared storage. NFS is suitable for demonstration environments but for a production
environment a more robust shared storage configuration using Fibre Channel or iSCSI and GFS is
recommended.

The configuration below consists of two servers (et-virt07 and et-virt08), both of them are
using eth1 as their default network interface hence they are using xenbr1 as their Xen networking
bridge. We are using a locally attached SCSI disk (/dev/sdb) on et-virt07 for shared storage
using NFS.

Setup for live migration
Create and mount the directory used for the migration:

mkdir /var/lib/libvirt/images
mount /dev/sdb /var/lib/libvirt/images

Important

Ensure the directory is exported with the correct options. If you are exporting the default directory
/var/lib/libvirt/images/ make sure you only export /var/lib/libvirt/images/ and
not/var/lib/xen/ as this directory is used by the xend daemon and other tools. Sharing /
var/lib/xen/ will cause unpredictable behavior.

cat /etc/exports
/var/lib/libvirt/images *(rw,async,no_root_squash)

Verify it is exported via NFS:

showmount -e et-virt07
Export list for et-virt07:
/var/lib/libvirt/images *

Install the guest
The install command in the example used for installing the guest:

virt-install -p -f /var/lib/libvirt/images/testvm1.dsk -s 5 -n\
testvm1 --vnc -r 1024 -l http://example.com/RHEL5-tree\
Server/x86-64/os/ -b xenbr1

For step by step installation instructions, refer to Chapter 8, Guest operating system installation
procedures.

Verify environment for migration
Make sure the virtualized network bridges are configured correctly and have the same name on both
hosts:

Chapter 20. Xen live migration

258

[et-virt08 ~]# brctl show
bridge name bridge id STP enabled interfaces
xenbr1 8000.feffffffffff no peth1
vif0.1

[et-virt07 ~]# brctl show
bridge name bridge id STP enabled interfaces
xenbr1 8000.feffffffffff no peth1
vif0.1

Verify the relocation parameters are configured on both hosts:

[et-virt07 ~]# grep xend-relocation /etc/xen/xend-config.sxp |grep -v '#'
(xend-relocation-server yes)
(xend-relocation-port 8002)
(xend-relocation-address '')
(xend-relocation-hosts-allow '')

[et-virt08 ~]# grep xend-relocation /etc/xen/xend-config.sxp |grep -v '#'
(xend-relocation-server yes)
(xend-relocation-port 8002)
(xend-relocation-address '')
(xend-relocation-hosts-allow '')

Make sure the relocation server has started and is listening on the dedicated port for Xen migrations
(8002):

[et-virt07 ~]# lsof -i :8002
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
python 3445 root 14u IPv4 10223 TCP *:teradataordbms (LISTEN)

[et-virt08 ~]# lsof -i :8002
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
python 3252 root 14u IPv4 10901 TCP *:teradataordbms (LISTEN)

That the default /var/lib/libvirt/images directory is available and mounted with networked
storage on both hosts. Shared, networked storage is required for migrations.

[et-virt08 ~]# df /var/lib/libvirt/images
Filesystem 1K-blocks Used Available Use% Mounted on
et-virt07:/var/lib/libvirt/images 70562400 2379712 64598336 4% /var/lib/libvirt/
images

[et-virt08 ~]# file /var/lib/libvirt/images/testvm1.dsk
/var/lib/libvirt/images/testvm1.dsk: x86 boot sector; partition 1: ID=0x83,
active, starthead 1, startsector 63, 208782 sectors; partition 2: ID=0x8e,
starthead 0, startsector 208845, 10265535 sectors, code offset 0x48

[et-virt08 ~]# touch /var/lib/libvirt/images/foo
[et-virt08 ~]# rm -f /var/lib/libvirt/images/foo

Verify saving and restoring the guest
Start the virtual machine (if the virtual machine is not on):

[et-virt07 ~]# virsh list

A live migration example

259

 Id Name State

Domain-0 running

[et-virt07 ~]# virsh start testvm1
Domain testvm1 started

Verify the virtual machine is running:

[et-virt07 ~]# virsh list
 Id Name State

Domain-0 running
testvm1 blocked

Save the virtual machine on the local host:

[et-virt07 images]# time virsh save testvm1 testvm1.sav
real 0m15.744s
user 0m0.188s
sys 0m0.044s

[et-virt07 images]# ls -lrt testvm1.sav
-rwxr-xr-x 1 root root 1075657716 Jan 12 06:46 testvm1.sav

[et-virt07 images]# virsh list
 Id Name State

Domain-0 running

Restore the virtual machine on the local host:

[et-virt07 images]# virsh restore testvm1.sav

[et-virt07 images]# virsh list
 Id Name State

Domain-0 running
testvm1 blocked

Start the live migration of domain-id from et-virt08 to et-virt07. The hostname you are
migrating to and <domain-id> must be replaced with valid values. This example uses the et-virt08
host which must have SSH access to et-virt07

[et-virt08 ~]# xm migrate --live testvm1 et-virt07

Verify the virtual machine is no longer present on et-virt08

[et-virt08 ~]# virsh list
 Id Name State

Domain-0 running

Verify the virtual machine has been migrated to et-virt07:

[et-virt07 ~]# virsh list

Chapter 20. Xen live migration

260

 Id Name State

Domain-0 running
testvm1 running

Testing the progress and initiating the live migration
Create the following script inside the virtual machine to log date and hostname during the migration.
This script performs I/O tasks on the guest's file system.

#!/bin/bash

while true
do
touch /var/tmp/$$.log
echo `hostname` >> /var/tmp/$$.log
 echo `date` >> /var/tmp/$$.log
 cat /var/tmp/$$.log
 df /var/tmp
 ls -l /var/tmp/$$.log
 sleep 3
 done

Remember, that script is only for testing purposes and unnecessary for a live migration in a production
environment.

Verify the virtual machine is running on et-virt08 before we try to migrate it to et-virt07:

[et-virt08 ~]# virsh list
 Id Name State

Domain-0 running
testvm1 blocked

Initiate a live migration to et-virt07. You can add the time command to see how long the migration
takes:

[et-virt08 ~]# xm migrate --live testvm1 et-virt07

run the script inside the guest:

./doit
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:27 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 62 Jan 12 02:26 /var/tmp/2279.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:27 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:30 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 124 Jan 12 02:26 /var/tmp/2279.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:27 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:30 EST 2007

A live migration example

261

dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:33 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 186 Jan 12 02:26 /var/tmp/2279.log
Fri Jan 12 02:26:45 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:48 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:51 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:54:57 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:55:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:55:03 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 744 Jan 12 06:55 /var/tmp/2279.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:26:27 EST 2007

Verify the virtual machine has been shut down on et-virt08:

[et-virt08 ~]# virsh list
 Id Name State

Domain-0 running

Verify the virtual machine has started up on et-virt07:

[et-virt07 images]# virsh list
 Id Name State

Domain-0 running
testvm1 blocked

Run through another cycle migrating from et-virt07 to et-virt08. Initiate a migration from et-
virt07 to et-virt08:

[et-virt07 images]# xm migrate --live testvm1 et-virt08

Verify the virtual machine has been shut down:

[et-virt07 images]# virsh list
 Id Name State

Domain-0 running

Before initiating the migration start the simple script in the guest and note the change in time when
migrating the guest:

./doit
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /

Chapter 20. Xen live migration

262

-rw-r--r-- 1 root root 62 Jan 12 06:57 /var/tmp/2418.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:56 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 124 Jan 12 06:57 /var/tmp/2418.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:56 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:58:00 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 186 Jan 12 06:57 /var/tmp/2418.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:56 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:58:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:00 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 248 Jan 12 02:30 /var/tmp/2418.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:56 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:58:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:03 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 310 Jan 12 02:30 /var/tmp/2418.log
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:53 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:57:56 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 06:58:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:00 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:03 EST 2007
dhcp78-218.lab.boston.redhat.com
Fri Jan 12 02:30:06 EST 2007
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
2983664 2043120 786536 73% /
-rw-r--r-- 1 root root 372 Jan 12 02:30 /var/tmp/2418.log

After the migration command completes on et-virt07 verify on et-virt08 that the virtual machine
has started:

[et-virt08 ~]# virsh list

Configuring guest live migration

263

 Id Name State

Domain-0 running
testvm1 blocked

and run another cycle:

[et-virt08 ~]# time virsh migrate --live testvm1 et-virt07
real 0m10.378s
user 0m0.068s
sys 0m0.052s

At this point you have successfully performed an offline and a live migration test.

20.2. Configuring guest live migration
This section covers offline migration of Xen guests to other servers running Red Hat Enterprise
Linux. Further, migration is performed in an offline method (using the xm migrate command). Live
migration can be done from the same command. However there are some additional modifications that
you must do to the xend-config configuration file. This example identifies the entries that you must
modify to ensure a successful migration:

(xend-relocation-server yes)
The default for this parameter is 'no', which keeps the relocation/migration server deactivated
(unless on a trusted network) and the domain virtual memory is exchanged in raw form without
encryption.

(xend-relocation-port 8002)
This parameter sets the port that xend uses for migration. Use this value unless your network
environment requires a custom value. Remove the comment symbol to enable it.

(xend-relocation-address)
This parameter is the address that listens for relocation socket connections, after you enable the
xend-relocation-server . The Xen hypervisor only listens for migration network traffic on
the specified interface.

(xend-relocation-hosts-allow)
This parameter controls the host that communicates with the relocation port. If the value is empty,
then all incoming connections are allowed. You must change this to a space-separated sequences
of regular expressions, for example:

(xend-relocation-hosts-allow- '^localhost\\.localdomain$')>

Accepted values included fully-qualified domain names, IP addresses or space separated regular
expressions.

After configuring, reboot the host to load new settings.

264

Chapter 21.

265

KVM live migration
This chapter covers migrating guests running on a KVM hypervisor to another KVM host.

Migration is the process of moving a virtualized guest from one host to another. Migration is a key
feature of virtualization as software is completely separated from hardware. Migration is useful for:

• Load balancing - guests can be moved to hosts with lower usage when a host becomes overloaded.

• Hardware failover - when hardware devices on the host start to fail, guests can be safely relocated
so the host can be powered down and repaired.

• Energy saving - guests can be redistributed to other hosts and host systems powered off to save
energy and cut costs in low usage periods.

• Geographic migration - guests can be moved to another location for lower latency or in serious
circumstances.

Migrations can be performed live or offline. To migrate guests the storage must be shared. Migration
works by sending the guests memory to the destination host. The shared storage stores the guest's
default file system. The file system image is not sent over the network from the source host to the
destination host.

An offline migration suspends the guest then moves an image of the guests memory to the destination
host. The guest is resumed on the destination host and the memory the guest used on the source host
is freed.

The time an offline migration takes depends network bandwidth and latency. A guest with 2GB of
memory should take an average of ten or so seconds on a 1 Gbit Ethernet link.

A live migration keeps the guest running on the source host and begins moving the memory without
stopping the guest. All modified memory pages are monitored for changes and sent to the destination
while the image is sent. The memory is updated with the changed pages. The process continues
until the amount of pause time allowed for the guest equals the predicted time for the final few pages
to be transfer. KVM estimates the time remaining and attempts to transfer the maximum amount
of page files from the source to the destination until KVM predicts the amount of remaining pages
can be transferred during a very brief time while the virtualized guest is paused. The registers are
loaded on the new host and the guest is then resumed on the destination host. If the guest cannot
be merged (which happens when guests are under extreme loads) the guest is paused and then an
offline migration is started instead.

The time an offline migration takes depends network bandwidth and latency. If the network is in heavy
use or a low bandwidth the migration will take much longer.

21.1. Live migration requirements
Migrating guests requires the following:

Migration requirements
• A virtualized guest installed on shared networked storage using one of the following protocols:

• Fibre Channel

• iSCSI

• NFS

Chapter 21. KVM live migration

266

• GFS2

• Two or more Red Hat Enterprise Linux systems of the same version with the same updates.

• Both system must have the appropriate ports open.

• Both systems must have identical network configurations. All bridging and network configurations
must be exactly the same on both hosts.

• Shared storage must mount at the same location on source and destination systems. The mounted
directory name must be identical.

Configuring network storage
Configure shared storage and install a guest on the shared storage. For shared storage instructions,
refer to Part V, “Virtualization Storage Topics”.

Alternatively, use the NFS example in Section 21.2, “Share storage example: NFS for a simple
migration”.

21.2. Share storage example: NFS for a simple migration
This example uses NFS to share guest images with other KVM hosts. This example is not practical for
large installations, this example is only for demonstrating migration techniques and small deployments.
Do not use this example for migrating or running more than a few virtualized guests.

For advanced and more robust shared storage instructions, refer to Part V, “Virtualization Storage
Topics”

1. Export your libvirt image directory
Add the default image directory to the /etc/exports file:

/var/lib/libvirt/images *.example.com(rw,no_root_squash,async)

Change the hosts parameter as required for your environment.

2. Start NFS
a. Install the NFS packages if they are not yet installed:

yum install nfs

b. Open the ports for NFS in iptables and add NFS to the /etc/hosts.allow file.

c. Start the NFS service:

service nfs start

3. Mount the shared storage on the destination
On the destination system, mount the /var/lib/libvirt/images directory:

mount sourceURL:/var/lib/libvirt/images /var/lib/libvirt/images

Live KVM migration with virsh

267

Locations must be the same on source and destination

Whichever directory is chosen for the guests must exactly the same on host and guest. This
applies to all types of shared storage. The directory must be the same or the migration will
fail.

21.3. Live KVM migration with virsh
A guest can be migrated to another host with the virsh command. The migrate command accepts
parameters in the following format:

virsh migrate --live GuestName DestinationURL

The GuestName parameter represents the name of the guest which you want to migrate.

The DestinationURL parameter is the URL or hostname of the destination system. The destination
system must run the same version of Red Hat Enterprise Linux, be using the same hypervisor and
have libvirt running.

Once the command is entered you will be prompted for the root password of the destination system.

Example: live migration with virsh
This example migrates from test1.example.com to test2.example.com. Change the host
names for your environment. This example migrates a virtual machine named RHEL4test.

This example assumes you have fully configured shared storage and meet all the prerequisites (listed
here: Migration requirements).

1. Verify the guest is running
From the source system, test1.example.com, verify RHEL4test is running:

[root@test1 ~]# virsh list
Id Name State

 10 RHEL4 running

2. Migrate the guest
Execute the following command to live migrate the guest to the destination,
test2.example.com. Append /system to the end of the destination URL to tell libvirt that you
need full access.

virsh migrate --live RHEL4test qemu+ssh://test2.example.com/system

Once the command is entered you will be prompted for the root password of the destination
system.

3. Wait
The migration may take some time depending on load and the size of the guest. virsh only
reports errors. The guest continues to run on the source host until fully migrated.

Chapter 21. KVM live migration

268

4. Verify the guest has arrived at the destination host
From the destination system, test2.example.com, verify RHEL4test is running:

[root@test2 ~]# virsh list
Id Name State

 10 RHEL4 running

The live migration is now complete.

Other networking methods

libvirt supports a variety of networking methods including TLS/SSL, unix sockets, SSH, and
unencrypted TCP. Refer to Chapter 22, Remote management of virtualized guests for more
information on using other methods.

21.4. Migrating with virt-manager
This section covers migrating KVM based guests with virt-manager.

1. Connect to the source and target hosts. On the File menu, click Add Connection, the Add
Connection window appears.

Enter the following details:

• Hypervisor: Select QEMU.

• Connection: Select the connection type.

• Hostname: Enter the hostname.

Click Connect.

Migrating with virt-manager

269

The Virtual Machine Manager displays a list of connected hosts.

Chapter 21. KVM live migration

270

2. Add a storage pool with the same NFS to the source and target hosts.

On the Edit menu, click Host Details, the Host Details window appears.

Click the Storage tab.

Migrating with virt-manager

271

3. Add a new storage pool. In the lower left corner of the window, click the + button. The Add a New
Storage Pool window appears.

Enter the following details:

• Name: Enter the name of the storage pool.

• Type: Select netfs: Network Exported Directory.

Chapter 21. KVM live migration

272

Click Forward.

4. Enter the following details:

• Format: Select the storage type. This must be NFS or iSCSI for live migrations.

• Host Name: Enter the IP address or fully-qualified domain name of the storage server.

Click Finish.

Migrating with virt-manager

273

5. Create a new volume in the shared storage pool, click New Volume.

6. Enter the details, then click Create Volume.

Chapter 21. KVM live migration

274

7. Create a virtual machine with the new volume, then run the virtual machine.

Migrating with virt-manager

275

The Virtual Machine window appears.

Chapter 21. KVM live migration

276

8. In the Virtual Machine Manager window, right-click on the virtual machine, select Migrate, then
click the migration location.

Migrating with virt-manager

277

9. Click Yes to confirm migration.

The Virtual Machine Manager displays the virtual machine in its new location.

Chapter 21. KVM live migration

278

The VNC connection displays the remote host's address in its title bar.

Migrating with virt-manager

279

280

Chapter 22.

281

Remote management of virtualized
guests
This section explains how to remotely manage your virtualized guests using ssh or TLS and SSL.

22.1. Remote management with SSH
The ssh package provides an encrypted network protocol which can securely send management
functions to remote virtualization servers. The method described uses the libvirt management
connection securely tunneled over an SSH connection to manage the remote machines. All the
authentication is done using SSH public key cryptography and passwords or passphrases gathered
by your local SSH agent. In addition the VNC console for each guest virtual machine is tunneled over
SSH.

SSH is usually configured by default so you probably already have SSH keys setup and no extra
firewall rules needed to access the management service or VNC console.

Be aware of the issues with using SSH for remotely managing your virtual machines, including:
• you require root log in access to the remote machine for managing virtual machines,

• the initial connection setup process may be slow,

• there is no standard or trivial way to revoke a user's key on all hosts or guests, and

• ssh does not scale well with larger numbers of remote machines.

Configuring password less or password managed SSH access for virt-manager
The following instructions assume you are starting from scratch and do not already have SSH keys set
up. If you have SSH keys set up and copied to the other systems you can skip this procedure.

The user is important for remote management

SSH keys are user dependent. Only the user who owns the key may access that key.

virt-manager must run as the user who owns the keys to connect to the remote host. That
means, if the remote systems are managed by a non-root user virt-manager must be run in
unprivileged mode. If the remote systems are managed by the local root user then the SSH keys
must be own and created by root.

You cannot manage the local host as an unprivileged user with virt-manager.

1. Optional: Changing user
Change user, if required. This example uses the local root user for remotely managing the other
hosts and the local host.

$ su -

Chapter 22. Remote management of virtualized guests

282

2. Generating the SSH key pair
Generate a public key pair on the machine virt-manager is used. This example uses the
default key location, in the ~/.ssh/ directory.

$ ssh-keygen -t rsa

3. Coping the keys to the remote hosts
Remote login without a password, or with a passphrase, requires an SSH key to be distributed to
the systems being managed. Use the ssh-copy-id command to copy the key to root user at the
system address provided (in the example, root@example.com).

ssh-copy-id -i ~/.ssh/id_rsa.pub root@example.com root@example.com's password: Now
 try logging into the machine, with "ssh 'root@example.com'", and check in: .ssh/
authorized_keys to make sure we haven't added extra keys that you weren't expecting

Repeat for other systems, as required.

4. Optional: Add the passphrase to the ssh-agent
Add the passphrase for the SSH key to the ssh-agent, if required. On the local host, use the
following command to add the passphrase (if there was one) to enable password-less login.

ssh-add ~/.ssh/id_rsa.pub

The SSH key was added to the remote system.

The libvirt daemon (libvirtd)
The libvirt daemon provide an interface for managing virtual machines. You must have the
libvirtd daemon installed and running on every remote host that needs managing.

$ ssh root@somehost
chkconfig libvirtd on
service libvirtd start

After libvirtd and SSH are configured you should be able to remotely access and manage your
virtual machines. You should also be able to access your guests with VNC at this point.

Accessing remote hosts with virt-manager
Remote hosts can be managed with the virt-manager GUI tool. SSH keys must belong to the user
executing virt-manager for password-less login to work.

1. Start virt-manager.

2. Open the File->Add Connection menu.

3. Input values for the hypervisor type, the connection, Connection->Remote tunnel over SSH, and
enter the desired hostname, then click connection.

22.2. Remote management over TLS and SSL
You can manage virtual machines using TLS and SSL. TLS and SSL provides greater scalability but
is more complicated than ssh (refer to Section 22.1, “Remote management with SSH”). TLS and SSL
is the same technology used by web browsers for secure connections. The libvirt management

Remote management over TLS and SSL

283

connection opens a TCP port for incoming connections, which is securely encrypted and authenticated
based on x509 certificates. In addition the VNC console for each guest virtual machine will be setup to
use TLS with x509 certificate authentication.

This method does not require shell accounts on the remote machines being managed. However, extra
firewall rules are needed to access the management service or VNC console. Certificate revocation
lists can revoke users' access.

Steps to setup TLS/SSL access for virt-manager
The following short guide assuming you are starting from scratch and you do not have any TLS/
SSL certificate knowledge. If you are lucky enough to have a certificate management server you can
probably skip the first steps.

 libvirt server setup
For more information on creating certificates, refer to the libvirt website, http://libvirt.org/
remote.html.

Xen VNC Server
The Xen VNC server can have TLS enabled by editing the configuration file, /etc/xen/xend-
config.sxp. Remove the commenting on the (vnc-tls 1) configuration parameter in the
configuration file.

The /etc/xen/vnc directory needs the following 3 files:
• ca-cert.pem - The CA certificate

• server-cert.pem - The Server certificate signed by the CA

• server-key.pem - The server private key

This provides encryption of the data channel. It might be appropriate to require that clients
present their own x509 certificate as a form of authentication. To enable this remove the
commenting on the (vnc-x509-verify 1) parameter.

 virt-manager and virsh client setup
The setup for clients is slightly inconsistent at this time. To enable the libvirt management API
over TLS, the CA and client certificates must be placed in /etc/pki. For details on this consult
http://libvirt.org/remote.html

In the virt-manager user interface, use the 'SSL/TLS' transport mechanism option when
connecting to a host.

For virsh, the URI has the following format:

• qemu://hostname.guestname/system for KVM.

• xen://hostname.guestname/ for Xen.

To enable SSL and TLS for VNC, it is necessary to put the certificate authority and client certificates
into $HOME/.pki, that is the following three files:

• CA or ca-cert.pem - The CA certificate.

• libvirt-vnc or clientcert.pem - The client certificate signed by the CA.

• libvirt-vnc or clientkey.pem - The client private key.

http://libvirt.org/remote.html
http://libvirt.org/remote.html
http://libvirt.org/remote.html

Chapter 22. Remote management of virtualized guests

284

22.3. Transport modes
For remote management, libvirt supports the following transport modes:

Transport Layer Security (TLS)
Transport Layer Security TLS 1.0 (SSL 3.1) authenticated and encrypted TCP/IP socket, usually
listening on a public port number. To use this you will need to generate client and server certificates.
The standard port is 16514.

UNIX sockets
Unix domain sockets are only accessible on the local machine. Sockets are not encrypted, and
use UNIX permissions or SELinux for authentication. The standard socket names are /var/
run/libvirt/libvirt-sock and /var/run/libvirt/libvirt-sock-ro (for read-only
connections).

SSH
Transported over a Secure Shell protocol (SSH) connection. Requires Netcat (the nc package)
installed. The libvirt daemon (libvirtd) must be running on the remote machine. Port 22 must be
open for SSH access. You should use some sort of ssh key management (for example, the ssh-
agent utility) or you will be prompted for a password.

ext
The ext parameter is used for any external program which can make a connection to the remote
machine by means outside the scope of libvirt. This parameter is unsupported.

tcp
Unencrypted TCP/IP socket. Not recommended for production use, this is normally disabled, but an
administrator can enable it for testing or use over a trusted network. The default port is 16509.

The default transport, if no other is specified, is tls.

Remote URIs
A Uniform Resource Identifier (URI) is used by virsh and libvirt to connect to a remote host.
URIs can also be used with the --connect parameter for the virsh command to execute single
commands or migrations on remote hosts.

libvirt URIs take the general form (content in square brackets, "[]", represents optional functions):

driver[+transport]://[username@][hostname][:port]/[path][?extraparameters]

The transport method or the hostname must be provided to target an external location.

Examples of remote management parameters
• Connect to a remote Xen hypervisor on the host named towada, using SSH transport and the SSH

username ccurran.

xen+ssh://ccurran@towada/

• Connect to a remote Xen hypervisor on the host named towada using TLS.

Transport modes

285

xen://towada/

• Connect to a remote Xen hypervisor on host towada using TLS. The no_verify=1 tells libvirt not
to verify the server's certificate.

xen://towada/?no_verify=1

• Connect to a remote KVM hypervisor on host towada using SSH.

qemu+ssh://towada/system

Testing examples
• Connect to the local KVM hypervisor with a non-standard UNIX socket. The full path to the Unix

socket is supplied explicitly in this case.

qemu+unix:///system?socket=/opt/libvirt/run/libvirt/libvirt-sock

• Connect to the libvirt daemon with an unencrypted TCP/IP connection to the server with the IP
address 10.1.1.10 on port 5000. This uses the test driver with default settings.

test+tcp://10.1.1.10:5000/default

Extra URI parameters
Extra parameters can be appended to remote URIs. The table below Table 22.1, “Extra URI
parameters” covers the recognized parameters. All other parameters are ignored. Note that parameter
values must be URI-escaped (that is, a question mark (?) is appended before the parameter and
special characters are converted into the URI format).

Table 22.1. Extra URI parameters

Name Transport mode Description Example usage

name all modes The name passed
to the remote
virConnectOpen
function. The name
is normally formed by
removing transport,
hostname, port
number, username and
extra parameters from
the remote URI, but in
certain very complex
cases it may be better
to supply the name
explicitly.

name=qemu:///system

command ssh and ext The external
command. For ext
transport this is
required. For ssh the
default is ssh. The

command=/opt/
openssh/bin/ssh

Chapter 22. Remote management of virtualized guests

286

Name Transport mode Description Example usage
PATH is searched for
the command.

socket unix and ssh The path to the UNIX
domain socket, which
overrides the default.
For ssh transport, this
is passed to the remote
netcat command (see
netcat).

socket=/opt/libvirt/run/
libvirt/libvirt-sock

netcat ssh The netcat command
can be used to connect
to remote systems.
The default netcat
parameter uses the
nc command. For
SSH transport, libvirt
constructs an SSH
command using the
form below:

 command
 -p port [-
l username] hostname
 netcat -U
 socket

The port, username
and hostname
parameters can be
specified as part of
the remote URI. The
command, netcat and
socket come from
other extra parameters.

netcat=/opt/netcat/bin/
nc

no_verify tls If set to a non-zero
value, this disables
client checks of the
server's certificate.
Note that to disable
server checks of the
client's certificate or
IP address you must
change the libvirtd
configuration.

no_verify=1

no_tty ssh If set to a non-zero
value, this stops ssh
from asking for a
password if it cannot
log in to the remote
machine automatically
(for using ssh-agent

no_tty=1

Transport modes

287

Name Transport mode Description Example usage
or similar). Use this
when you do not
have access to a
terminal - for example
in graphical programs
which use libvirt.

288

Part V. Virtualization Storage Topics

Introduction to storage
administration for virtualization

This part covers using shared, networked storage with virtualization on Red Hat Enterprise Linux.

The following methods are supported for virtualization:

• Fibre Channel

• iSCSI

• NFS

• GFS2

Networked storage is essential for live and offline guest migrations. You cannot migrate guests without
shared storage.

Chapter 23.

291

Using shared storage with virtual disk
images
This chapter covers the use of shared and network storage devices for virtual disks.

23.1. Using iSCSI for storing virtual disk images
This section demonstrates how to set up an iSCSI target on Red Hat Enterprise Linux and how to
configure iSCSI on a libvirt KVM host using virsh, and finally how to provision a guest on iSCSI using
virt-install.

Important

Setting up a Red Hat Enterprise Linux server as an iSCSI target is not recommended. The
example used in this section should not be used in production, and is provided as an example
which should only be referred to for basic shared storage testing and educational purposes.

23.1.1. How to set up an iSCSI target on Red Hat Enterprise Linux

1. Install and enable the iSCSI target service
Install and enable the iSCSI target service with the following commands:

yum install scsi-target-utils
chkconfig tgtd on
service tgtd start

Important

The scsi-target-utils package required for this example is provided only in the Cluster
Storage add-on for Red Hat Enterprise Linux 5, and may not be available for your system.
Contact your support agent to activate this add-on if you are currently unable to install this
package.

2. Allocate storage for the LUNs
The iSCSI target service is not dependent on a particular type of exported LUN. The LUNs can
be plain files, LVM volumes, or block devices. There is however a performance overhead if using
the LVM and/or file system layers as compared to block devices. The guest providing the iSCSI
service in this example has no spare block or LVM devices, so raw files will be used.

This example demonstrates the creation of two LUNs; one is a 10GB thin-provisioned (sparse file)
LUN, and the other has 500MB, of which are fully-allocated. The following commands will achieve
this configuration. Be aware that your environment will be different and this is provided only as an
example:

Chapter 23. Using shared storage with virtual disk images

292

mkdir -p /var/lib/tgtd/kvmguest
dd if=/dev/zero of=/var/lib/tgtd/kvmguest/rhelx86_64.img bs=1M seek=10240 count=0
dd if=/dev/zero of=/var/lib/tgtd/kvmguest/shareddata.img bs=1M count=512
restorecon -R /var/lib/tgtd

3. Export the iSCSI target and LUNs
For Red Hat Enterprise Linux 5, a series of tgtadm commands is required to create a target and
associate the storage volumes created earlier. First, the following command adds a target using
an iSCSI Qualified Name (IQN):

tgtadm --lld iscsi --op new --mode target --tid 1 --targetname \
iqn.2004-04.rhel:rhel5:iscsi.kvmguest

Now the storage volumes must be associated with LUNs in the iSCSI target with these two
commands:

tgtadm --lld iscsi --op new --mode logicalunit --tid 1 --lun 1 \
--backing-store /var/lib/tgtd/kvmguest/rhelx86_64.img

tgtadm --lld iscsi --op new --mode logicalunit --tid 1 --lun 2 \
--backing-store /var/lib/tgtd/kvmguest/shareddata.img

Important

Add the previous 3 tgtadm commands to the end of the /etc/rc.local file to ensure
normal operation upon restarting of the system.

To confirm the successful operation of the previous commands, query the iSCSI target setup:

tgtadm --lld iscsi --op show --mode target
Target 1: iqn.2004-04.rhel:rhel5:iscsi.kvmguest
 System information:
 Driver: iscsi
 State: ready
 I_T nexus information:
 LUN information:
 LUN: 0
 Type: controller
 SCSI ID: IET 00010000
 SCSI SN: beaf10
 Size: 0 MB, Block size: 1
 Online: Yes
 Removable media: No
 Readonly: No
 Backing store type: null
 Backing store path: None
 Backing store flags:
 LUN: 1
 Type: disk
 SCSI ID: IET 00010001
 SCSI SN: beaf11

How to configure iSCSI on a libvirt KVM host and provision a guest using virt-install

293

 Size: 10737 MB, Block size: 512
 Online: Yes
 Removable media: No
 Readonly: No
 Backing store type: rdwr
 Backing store path: /var/lib/tgtd/kvmguest/rhelx86_64.img
 Backing store flags:
 LUN: 2
 Type: disk
 SCSI ID: IET 00010002
 SCSI SN: beaf12
 Size: 537 MB, Block size: 512
 Online: Yes
 Removable media: No
 Readonly: No
 Backing store type: rdwr
 Backing store path: /var/lib/tgtd/kvmguest/shareddata.img
 Backing store flags:
 Account information:
 ACL information:

4. Allow client access to the target
Finally, this example command allows access to all clients without any authentication:

tgtadm --lld iscsi --op bind --mode target --tid 1 --initiator-address ALL

Two common mistakes

The two most common problems encountered when configuring the iSCSI target are SELinux
and iptables. If adding plain files as LUNs in an iSCSI target, ensure the files are labelled
system_u:object_r:tgtd_var_lib_t:s0. TCP port 3260 must also be open in your
iptables configuration.

23.1.2. How to configure iSCSI on a libvirt KVM host and provision a
guest using virt-install
The previous section described how to set up an iSCSI target. This section demonstrates how to
configure iSCSI on a libvirt KVM instance using virsh, and then how to provision a guest using virt-
install.

1. Defining the storage pool
All libvirt storage is managed through storage pools, of which there are many possible types:
SCSI, NFS, ext4, plain directory and iSCSI. All libvirt objects are configured via XML description
files, and storage pools are no different in this regard. For an iSCSI storage pool there are three
important pieces of information to provide:

• The target path - this determines how libvirt will expose device paths for the pool. Paths like /
dev/sda and /dev/sdb are not an ideal choice as they can change between reboots, and
can change across machines within a cluster; in other words, the names are assigned on a first
come, first served basis by the kernel. It is strongly recommended to use the /dev/disk/by-
path format. This results in a consistent naming scheme across all machines.

• The host name - this is simply the fully-qualified DNS name of the iSCSI server.

Chapter 23. Using shared storage with virtual disk images

294

• The source path - this is the iSCSI qualified name (IQN) seen in the previous setup procedure
(iqn.2004-04.rhel:rhel5:iscsi.kvmguest).

Although your environment will likely be different, the following text is what an iSCSI configuration
will look like:

<pool type='iscsi'>
 <name>kvmguest</name>
 <source>
 <host name='myiscsi.example.com'/>
 <device path='iqn.2004-04.rhel:rhel5:iscsi.kvmguest'/>
 </source>
 <target>
 <path>/dev/disk/by-path</path>
 </target>
</pool>

Save this XML code to a file named iscsirhel5.xml and load it into libvirt using the pool-
define command:

virsh pool-define iscsirhel5.xml
Pool kvmguest defined from iscsirhel5.xml

virsh pool-list --all
Name State Autostart

default active yes
kvmguest inactive no

2. Starting the storage pool
The configuration is saved, but the iSCSI target has not yet been logged into, so no LUNs will be
visible on the host at this point. Use the pool-start command the make the LUNs visible with
the vol-list command.

virsh pool-start kvmguest
Pool kvmguest started

virsh vol-list kvmguest
Name Path

10.0.0.1 /dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-1
10.0.0.2 /dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-2

3. Querying LUN information
Further information about each LUN can be obtained using the vol-info and vol-dumpxml
commands:

virsh vol-info /dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-1

Name: 10.0.0.1
Type: block
Capacity: 10.00 GB

How to configure iSCSI on a libvirt KVM host and provision a guest using virt-install

295

Allocation: 10.00 GB

virsh vol-dumpxml /dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-1
<volume>
 <name>10.0.0.1</name>
 <key>/dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-1</key>
 <source>
 </source>
 <capacity>10737418240</capacity>
 <allocation>10737418240</allocation>
 <target>
 <path>/dev/disk/by-path/ip-192.168.122.2:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-2</path>
 <format type='unknown'/>
 <permissions>
 <mode>0660</mode>
 <owner>0</owner>
 <group>6</group>
 <label>system_u:object_r:fixed_disk_device_t:s0</label>
 </permissions>
 </target>
</volume>

4. Activating the storage at boot time
If everything is configured properly, the pool can be set to start automatically upon booting of the
host:

virsh pool-autostart kvmguest
Pool kvmguest marked as autostarted

5. Provisioning a guest on iSCSI
The virt-install command can be used to install new guests from the command line. The
--disk argument can take the name of a storage pool, followed by the name of any contained
volumes. Continuing this example, the following command will begin the installation of a guest
with two disks; the first disk is the root file system, the second disk can be shared between
multiple guests for common data:

virt-install --accelerate --name rhelx86_64 --ram 800 --vnc --disk \
 vol=kvmguest/10.0.0.1 --disk vol=kvmguest/10.0.0.2,perms=sh --pxe

Once this rhelx86_64 guest is installed, the following command and output shows the XML that
virt-install used to associate the guest with the iSCSI LUNs:

virsh dumpxml rhelx86_64

<domain type='kvm' id='4'>
 <name>rhelx86_64</name>
 <uuid>ad8961e9-156f-746f-5a4e-f220bfafd08d</uuid>
 <memory>819200</memory>
 <currentMemory>819200</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='x86_64' machine='rhel'>hvm</type>
 <boot dev='network'/>
 </os>

Chapter 23. Using shared storage with virtual disk images

296

 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>destroy</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/disk/by-path/ip-192.168.122.170:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-1'/>
 <target dev='hda' bus='ide'/>
 <alias name='ide0-0-0'/>
 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/disk/by-path/ip-192.168.122.170:3260-iscsi-
iqn.2004-04.rhel:rhel5:iscsi.kvmguest-lun-2'/>
 <target dev='hdb' bus='ide'/>
 <shareable/>
 <alias name='ide0-0-1'/>
 <address type='drive' controller='0' bus='0' unit='1'/>
 </disk>
 <controller type='ide' index='0'>
 <alias name='ide0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/>
 </controller>
 <interface type='network'>
 <mac address='52:54:00:0a:ca:84'/>
 <source network='default'/>
 <target dev='vnet1'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/28'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/28'>
 <source path='/dev/pts/28'/>
 <target port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='5901' autoport='yes' keymap='en-us'/>
 <video>
 <model type='cirrus' vram='9216' heads='1'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </video>
 </devices>
</domain>

There are two important items of note in this output:

• The guest uses the large /dev/disk/by-path paths to refer to the LUNs. As described
earlier, this is so that file names and paths will remain constant.

How to configure iSCSI on a libvirt KVM host and provision a guest using virt-install

297

• The second disk has the <shareable/> flag set. Critical for the disk to be safely shared between
guests, this ensures that the SELinux labelling will be appropriate for multiple guests to access
the disk and that all I/O caching is disabled on the host.

For migration of guests between hosts to succeed, some form of shared storage is required. Although
NFS is often used for this purpose, the lack of SELinux labelling for NFS means there is limited sVirt
protection between guests. This lack of sVirt support could allow one guest to use another guest's
disks, which is usually undesirable.

Using iSCSI provides full sVirt isolation between guests to the same degree of non-shared storage.

298

Part VI. Virtualization Reference Guide

Virtualization commands,
system tools, applications and
additional systems reference

These chapters provide detailed descriptions of virtualization commands, system tools, and
applications included in Red Hat Enterprise Linux. These chapters are designed for users requiring
information on advanced functionality and other features.

Chapter 24.

301

Virtualization tools
The following is a list of tools for virtualization administration, debugging and networking tools that are
useful for systems running Xen.

System Administration Tools
• vmstat

• iostat

• lsof

lsof -i :5900
xen-vncfb 10635 root 5u IPv4 218738 TCP grumble.boston.redhat.com:5900 (LISTEN)

• qemu-img

Advanced Debugging Tools
• systemTap

• crash

• xen-gdbserver

• sysrq

• sysrq t

• sysrq w

• sysrq c

Networking
brtcl

•
brctl show
bridge name bridge id STP enabled interfaces
xenbr0 8000.feffffffffff no vif13.0
 pdummy0
 vif0.0

•
brctl showmacs xenbr0
port no mac addr is local? aging timer
 1 fe:ff:ff:ff:ff:ff yes 0.00

•
brctl showstp xenbr0
xenbr0
bridge id 8000.feffffffffff
designated root 8000.feffffffffff
root port 0 path cost 0
max age 20.00 bridge max age 20.00
hello time 2.00 bridge hello time 2.00
forward delay 0.00 bridge forward delay 0.00
aging time 300.01
hello timer 1.43 tcn timer 0.00
topology change timer 0.00 gc timer 0.02
flags

Chapter 24. Virtualization tools

302

vif13.0 (3)
port id 8003 state forwarding
designated root 8000.feffffffffff path cost 100
designated bridge 8000.feffffffffff message age timer 0.00
designated port 8003 forward delay timer 0.00
designated cost 0 hold timer 0.43
flags

pdummy0 (2)
port id 8002 state forwarding
designated root 8000.feffffffffff path cost 100
designated bridge 8000.feffffffffff message age timer 0.00
designated port 8002 forward delay timer 0.00
designated cost 0 hold timer 0.43
flags

vif0.0 (1)
port id 8001 state forwarding
designated root 8000.feffffffffff path cost 100
designated bridge 8000.feffffffffff message age timer 0.00
designated port 8001 forward delay timer 0.00
designated cost 0 hold timer 0.43
flags

• ifconfig

• tcpdump

KVM tools
• ps

• pstree

• top

• kvmtrace

• kvm_stat

Xen tools
• xentop

• xm dmesg

• xm log

Chapter 25.

303

Managing guests with virsh
virsh is a command line interface tool for managing guests and the hypervisor.

The virsh tool is built on the libvirt management API and operates as an alternative to the xm
command and the graphical guest Manager (virt-manager). virsh can be used in read-only mode
by unprivileged users. You can use virsh to execute scripts for the guest machines.

virsh command quick reference
The following tables provide a quick reference for all virsh command line options.

Table 25.1. Guest management commands

Command Description

help Prints basic help information.

list Lists all guests.

dumpxml Outputs the XML configuration file for the guest.

create Creates a guest from an XML configuration file
and starts the new guest.

start Starts an inactive guest.

destroy Forces a guest to stop.

define Outputs an XML configuration file for a guest.

domid Displays the guest's ID.

domuuid Displays the guest's UUID.

dominfo Displays guest information.

domname Displays the guest's name.

domstate Displays the state of a guest.

quit Quits the interactive terminal.

reboot Reboots a guest.

restore Restores a previously saved guest stored in a
file.

resume Resumes a paused guest.

save Save the present state of a guest to a file.

shutdown Gracefully shuts down a guest.

suspend Pauses a guest.

undefine Deletes all files associated with a guest.

migrate Migrates a guest to another host.

The following virsh command options manage guest and hypervisor resources:

Table 25.2. Resource management options

Command Description

setmem Sets the allocated memory for a guest.

setmaxmem Sets maximum memory limit for the hypervisor.

setvcpus Changes number of virtual CPUs assigned to a
guest.

Chapter 25. Managing guests with virsh

304

Command Description

vcpuinfo Displays virtual CPU information about a guest.

vcpupin Controls the virtual CPU affinity of a guest.

domblkstat Displays block device statistics for a running
guest.

domifstat Displays network interface statistics for a running
guest.

attach-device Attach a device to a guest, using a device
definition in an XML file.

attach-disk Attaches a new disk device to a guest.

attach-interface Attaches a new network interface to a guest.

detach-device Detach a device from a guest, takes the same
kind of XML descriptions as command attach-
device.

detach-disk Detach a disk device from a guest.

detach-interface Detach a network interface from a guest.

These are miscellaneous virsh options:

Table 25.3. Miscellaneous options

Command Description

version Displays the version of virsh

nodeinfo Outputs information about the hypervisor

Connecting to the hypervisor
Connect to a hypervisor session with virsh:

virsh connect {hostname OR URL}

Where <name> is the machine name of the hypervisor. To initiate a read-only connection, append the
above command with -readonly.

Creating a virtual machine XML dump (configuration file)
Output a guest's XML configuration file with virsh:

virsh dumpxml {domain-id, domain-name or domain-uuid}

This command outputs the guest's XML configuration file to standard out (stdout). You can save the
data by piping the output to a file. An example of piping the output to a file called guest.xml:

virsh dumpxml GuestID > guest.xml

This file guest.xml can recreate the guest (refer to Editing a guest's configuration file. You can edit
this XML configuration file to configure additional devices or to deploy additional guests. Refer to
Section 33.1, “Using XML configuration files with virsh” for more information on modifying files created
with virsh dumpxml.

An example of virsh dumpxml output:

305

virsh dumpxml r5b2-mySQL01
<domain type='xen' id='13'>
 <name>r5b2-mySQL01</name>
 <uuid>4a4c59a7ee3fc78196e4288f2862f011</uuid>
 <bootloader>/usr/bin/pygrub</bootloader>
 <os>
 <type>linux</type>
 <kernel>/var/lib/libvirt/vmlinuz.2dgnU_</kernel>
 <initrd>/var/lib/libvirt/initrd.UQafMw</initrd>
 <cmdline>ro root=/dev/VolGroup00/LogVol00 rhgb quiet</cmdline>
 </os>
 <memory>512000</memory>
 <vcpu>1</vcpu>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <interface type='bridge'>
 <source bridge='xenbr0'/>
 <mac address='00:16:3e:49:1d:11'/>
 <script path='vif-bridge'/>
 </interface>
 <graphics type='vnc' port='5900'/>
 <console tty='/dev/pts/4'/>
 </devices>
</domain>

Creating a guest from a configuration file
Guests can be created from XML configuration files. You can copy existing XML from previously
created guests or use the dumpxml option (refer to Creating a virtual machine XML dump
(configuration file)). To create a guest with virsh from an XML file:

virsh create configuration_file.xml

Editing a guest's configuration file
Instead of using the dumpxml option (refer to Creating a virtual machine XML dump (configuration
file)) guests can be edited either while they run or while they are offline. The virsh edit command
provides this functionality. For example, to edit the guest named softwaretesting:

virsh edit softwaretesting

This opens a text editor. The default text editor is the $EDITOR shell parameter (set to vi by default).

Suspending a guest
Suspend a guest with virsh:

virsh suspend {domain-id, domain-name or domain-uuid}

When a guest is in a suspended state, it consumes system RAM but not processor resources. Disk
and network I/O does not occur while the guest is suspended. This operation is immediate and the
guest can be restarted with the resume (Resuming a guest) option.

Resuming a guest
Restore a suspended guest with virsh using the resume option:

Chapter 25. Managing guests with virsh

306

virsh resume {domain-id, domain-name or domain-uuid}

This operation is immediate and the guest parameters are preserved for suspend and resume
operations.

Save a guest
Save the current state of a guest to a file using the virsh command:

virsh save {domain-name, domain-id or domain-uuid} filename

This stops the guest you specify and saves the data to a file, which may take some time given the
amount of memory in use by your guest. You can restore the state of the guest with the restore
(Restore a guest) option. Save is similar to pause, instead of just pausing a guest the present state of
the guest is saved.

Restore a guest
Restore a guest previously saved with the virsh save command (Save a guest) using virsh:

virsh restore filename

This restarts the saved guest, which may take some time. The guest's name and UUID are preserved
but are allocated for a new id.

Shut down a guest
Shut down a guest using the virsh command:

virsh shutdown {domain-id, domain-name or domain-uuid}

You can control the behavior of the rebooting guest by modifying the on_shutdown parameter in the
guest's configuration file.

Rebooting a guest
Reboot a guest using virsh command:

#virsh reboot {domain-id, domain-name or domain-uuid}

You can control the behavior of the rebooting guest by modifying the on_reboot element in the
guest's configuration file.

Forcing a guest to stop
Force a guest to stop with the virsh command:

virsh destroy {domain-id, domain-name or domain-uuid}

This command does an immediate ungraceful shutdown and stops the specified guest. Using
virsh destroy can corrupt guest file systems . Use the destroy option only when the guest is
unresponsive. For para-virtualized guests, use the shutdown option(Shut down a guest) instead.

307

Getting the domain ID of a guest
To get the domain ID of a guest:

virsh domid {domain-name or domain-uuid}

Getting the domain name of a guest
To get the domain name of a guest:

virsh domname {domain-id or domain-uuid}

Getting the UUID of a guest
To get the Universally Unique Identifier (UUID) for a guest:

virsh domuuid {domain-id or domain-name}

An example of virsh domuuid output:

virsh domuuid r5b2-mySQL01
4a4c59a7-ee3f-c781-96e4-288f2862f011

Displaying guest Information
Using virsh with the guest's domain ID, domain name or UUID you can display information on the
specified guest:

virsh dominfo {domain-id, domain-name or domain-uuid}

This is an example of virsh dominfo output:

virsh dominfo r5b2-mySQL01
id: 13
name: r5b2-mysql01
uuid: 4a4c59a7-ee3f-c781-96e4-288f2862f011
os type: linux
state: blocked
cpu(s): 1
cpu time: 11.0s
max memory: 512000 kb
used memory: 512000 kb

Displaying host information
To display information about the host:

virsh nodeinfo

An example of virsh nodeinfo output:

virsh nodeinfo
CPU model x86_64
CPU (s) 8

Chapter 25. Managing guests with virsh

308

CPU frequency 2895 Mhz
CPU socket(s) 2
Core(s) per socket 2
Threads per core: 2
Numa cell(s) 1
Memory size: 1046528 kb

This displays the node information and the machines that support the virtualization process.

Displaying the guests
To display the guest list and their current states with virsh:

virsh list

Other options available include:

the --inactive option to list inactive guests (that is, guests that have been defined but are not
currently active), and

the --all option lists all guests. For example:

virsh list --all
 Id Name State

 0 Domain-0 running
 1 Domain202 paused
 2 Domain010 inactive
 3 Domain9600 crashed

The output from virsh list is categorized as one of the six states (listed below).

• The running state refers to guests which are currently active on a CPU.

• Guests listed as blocked are blocked, and are not running or runnable. This is caused by a guest
waiting on I/O (a traditional wait state) or guests in a sleep mode.

• The paused state lists domains that are paused. This occurs if an administrator uses the pause
button in virt-manager, xm pause or virsh suspend. When a guest is paused it consumes
memory and other resources but it is ineligible for scheduling and CPU resources from the
hypervisor.

• The shutdown state is for guests in the process of shutting down. The guest is sent a shutdown
signal and should be in the process of stopping its operations gracefully. This may not work with all
guest operating systems; some operating systems do not respond to these signals.

• Domains in the dying state are in is in process of dying, which is a state where the domain has not
completely shut-down or crashed.

• crashed guests have failed while running and are no longer running. This state can only occur if
the guest has been configured not to restart on crash.

Displaying virtual CPU information
To display virtual CPU information from a guest with virsh:

virsh vcpuinfo {domain-id, domain-name or domain-uuid}

309

An example of virsh vcpuinfo output:

virsh vcpuinfo r5b2-mySQL01
VCPU: 0
CPU: 0
State: blocked
CPU time: 0.0s
CPU Affinity: yy

Configuring virtual CPU affinity
To configure the affinity of virtual CPUs with physical CPUs:

virsh vcpupin domain-id vcpu cpulist

The domain-id parameter is the guest's ID number or name.

The vcpu parameter denotes the number of virtualized CPUs allocated to the guest.The vcpu
parameter must be provided.

The cpulist parameter is a list of physical CPU identifier numbers separated by commas. The
cpulist parameter determines which physical CPUs the VCPUs can run on.

Configuring virtual CPU count
To modify the number of CPUs assigned to a guest with virsh:

virsh setvcpus {domain-name, domain-id or domain-uuid} count

The new count value cannot exceed the count above the amount specified when the guest was
created.

Configuring memory allocation
To modify a guest's memory allocation with virsh :

virsh setmem {domain-id or domain-name} count

You must specify the count in kilobytes. The new count value cannot exceed the amount you specified
when you created the guest. Values lower than 64 MB are unlikely to work with most guest operating
systems. A higher maximum memory value does not affect an active guests. If the new value is lower
the available memory will shrink and the guest may crash.

Displaying guest block device information
Use virsh domblkstat to display block device statistics for a running guest.

virsh domblkstat GuestName block-device

Displaying guest network device information
Use virsh domifstat to display network interface statistics for a running guest.

virsh domifstat GuestName interface-device

Chapter 25. Managing guests with virsh

310

Migrating guests with virsh
A guest can be migrated to another host with virsh. Migrate domain to another host. Add --live for
live migration. The migrate command accepts parameters in the following format:

virsh migrate --live GuestName DestinationURL

The --live parameter is optional. Add the --live parameter for live migrations.

The GuestName parameter represents the name of the guest which you want to migrate.

The DestinationURL parameter is the URL or hostname of the destination system. The destination
system requires:

• the same version of Red Hat Enterprise Linux,

• the same hypervisor (KVM or Xen), and

• the libvirt service must be started.

Once the command is entered you will be prompted for the root password of the destination system.

Managing virtual networks
This section covers managing virtual networks with the virsh command. To list virtual networks:

virsh net-list

This command generates output similar to:

virsh net-list
Name State Autostart

default active yes
vnet1 active yes
vnet2 active yes

To view network information for a specific virtual network:

virsh net-dumpxml NetworkName

This displays information about a specified virtual network in XML format:

virsh net-dumpxml vnet1
<network>
 <name>vnet1</name>
 <uuid>98361b46-1581-acb7-1643-85a412626e70</uuid>
 <forward dev='eth0'/>
 <bridge name='vnet0' stp='on' forwardDelay='0' />
 <ip address='192.168.100.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.100.128' end='192.168.100.254' />
 </dhcp>
 </ip>
</network>

Other virsh commands used in managing virtual networks are:

• virsh net-autostart network-name — Autostart a network specified as network-name.

311

• virsh net-create XMLfile — generates and starts a new network using an existing XML file.

• virsh net-define XMLfile — generates a new network device from an existing XML file
without starting it.

• virsh net-destroy network-name — destroy a network specified as network-name.

• virsh net-name networkUUID — convert a specified networkUUID to a network name.

• virsh net-uuid network-name — convert a specified network-name to a network UUID.

• virsh net-start nameOfInactiveNetwork — starts an inactive network.

• virsh net-undefine nameOfInactiveNetwork — removes the definition of an inactive
network.

312

Chapter 26.

313

Managing guests with the Virtual
Machine Manager (virt-manager)
This section describes the Virtual Machine Manager (virt-manager) windows, dialog boxes, and
various GUI controls.

virt-manager provides a graphical view of hypervisors and guest on your system and on remote
machines. You can use virt-manager to define both para-virtualized and fully virtualized guests.
virt-manager can perform virtualization management tasks, including:

• assigning memory,

• assigning virtual CPUs,

• monitoring operational performance,

• saving and restoring, pausing and resuming, and shutting down and starting virtualized guests,

• links to the textual and graphical consoles, and

• live and offline migrations.

26.1. The Add Connection window
This window appears first and prompts the user to choose a hypervisor session. Non-privileged users
can initiate a read-only session. Root users can start a session with full blown read-write status. For
normal use, select the Local Xen host option or QEMU (for KVM).

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

314

Figure 26.1. Virtual Machine Manager connection window

26.2. The Virtual Machine Manager main window
This main window displays all the running guests and resources used by guests. Select a virtualized
guest by double clicking the guest's name.

The guest Overview tab

315

Figure 26.2. Virtual Machine Manager main window

26.3. The guest Overview tab
The Overview tab displays graphs and statistics of a guest's live resource utilization data available
from virt-manager. The UUID field displays the globally unique identifier for the virtual machines.

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

316

Figure 26.3. The Overview tab

26.4. Virtual Machine graphical console
This window displays a virtual machine's graphical console. Para-virtualized and fully virtualized
guests use different techniques to export their local virtual framebuffers, but both technologies use

Starting virt-manager

317

VNC to make them available to the Virtual Machine Manager's console window. If your virtual machine
is set to require authentication, the Virtual Machine Graphical console prompts you for a password
before the display appears.

Figure 26.4. Graphical console window

A note on security and VNC

VNC is considered insecure by many security experts, however, several changes have been
made to enable the secure usage of VNC for virtualization on Red Hat enterprise Linux. The
guest machines only listen to the local host (dom0)'s loopback address (127.0.0.1). This
ensures only those with shell privileges on the host can access virt-manager and the virtual
machine through VNC.

Remote administration can be performed following the instructions in Chapter 22, Remote
management of virtualized guests. TLS can provide enterprise level security for managing guest
and host systems.

Your local desktop can intercept key combinations (for example, Ctrl+Alt+F11) to prevent them from
being sent to the guest machine. You can use the virt-manager sticky key capability to send these
sequences. To use this capability, you must press any modifier key (Ctrl or Alt) 3 times and the key
you specify gets treated as active until the next non-modifier key is pressed. You can then send Ctrl-
Alt-F11 to the guest by entering the key sequence 'Ctrl Ctrl Ctrl Alt+F1'.

Note

Due to a limitation of virt-manager, it is not possible to use this sticky key feature to send a
Sysrq key combination to a guest.

26.5. Starting virt-manager
To start virt-manager session open the Applications menu, then the System Tools menu and
select Virtual Machine Manager (virt-manager).

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

318

The virt-manager main window appears.

Figure 26.5. Starting virt-manager

Alternatively, virt-manager can be started remotely using ssh as demonstrated in the following
command:

ssh -X host's address[remotehost]# virt-manager

Using ssh to manage virtual machines and hosts is discussed further in Section 22.1, “Remote
management with SSH”.

Restoring a saved machine

319

26.6. Restoring a saved machine
After you start the Virtual Machine Manager, all virtual machines on your system are displayed in
the main window. Domain0 is your host system. If there are no machines present, this means that
currently there are no machines running on the system.

To restore a previously saved session:

1. From the File menu, select Restore a saved machine.

Figure 26.6. Restoring a virtual machine

2. The Restore Virtual Machine main window appears.

3. Navigate to correct directory and select the saved session file.

4. Click Open.

The saved virtual system appears in the Virtual Machine Manager main window.

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

320

Figure 26.7. A restored virtual machine manager session

26.7. Displaying guest details
You can use the Virtual Machine Monitor to view activity data information for any virtual machines on
your system.

To view a virtual system's details:

Displaying guest details

321

1. In the Virtual Machine Manager main window, highlight the virtual machine that you want to view.

Figure 26.8. Selecting a virtual machine to display

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

322

2. From the Virtual Machine Manager Edit menu, select Machine Details (or click the Details button
on the bottom of the Virtual Machine Manager main window).

Figure 26.9. Displaying the overview window

On the Virtual Machine window, click the Overview tab.

The Overview tab summarizes CPU and memory usage for the virtualized guest you specified.

Displaying guest details

323

Figure 26.10. Displaying guest details overview

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

324

3. On the Virtual Machine window, click the Hardwaretab.

Figure 26.11. Displaying guest hardware details

Displaying guest details

325

4. On the Hardware tab, click on Processor to view or change the current processor allocation.

Figure 26.12. Processor allocation panel

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

326

5. On the Hardware tab, click on Memory to view or change the current RAM memory allocation.

Figure 26.13. Displaying memory allocation

6. On the Hardware tab, click on Disk to view or change the current hard disk configuration.

Figure 26.14. Displaying disk configuration

Status monitoring

327

7. On the Hardware tab, click on NIC to view or change the current network configuration.

Figure 26.15. Displaying network configuration

26.8. Status monitoring
Status status monitoring preferences can be modified with virt-manager's preferences window.

To configure status monitoring:

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

328

1. From the Edit menu, select Preferences.

Figure 26.16. Modifying guest preferences

The Preferences window appears.

Displaying guest identifiers

329

2. From the Stats tab specify the time in seconds or stats polling options.

Figure 26.17. Configuring status monitoring

26.9. Displaying guest identifiers
To view the guest IDs for all virtual machines on your system:

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

330

1. From the View menu, select the Domain ID check box.

Figure 26.18. Viewing guest IDs

2. The Virtual Machine Manager lists the Domain IDs for all domains on your system.

Figure 26.19. Displaying domain IDs

26.10. Displaying a guest's status

To view the status of all virtual machines on your system:

Displaying virtual CPUs

331

1. From the View menu, select the Status check box.

Figure 26.20. Selecting a virtual machine's status

2. The Virtual Machine Manager lists the status of all virtual machines on your system.

Figure 26.21. Displaying a virtual machine's status

26.11. Displaying virtual CPUs
To view the amount of virtual CPUs for all virtual machines on your system:

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

332

1. From the View menu, select the Virtual CPUs check box.

Figure 26.22. Selecting the virtual CPUs option

2. The Virtual Machine Manager lists the Virtual CPUs for all virtual machines on your system.

Figure 26.23. Displaying Virtual CPUs

26.12. Displaying CPU usage
To view the CPU usage for all virtual machines on your system:

Displaying memory usage

333

1. From the View menu, select the CPU Usage check box.

Figure 26.24. Selecting CPU usage

2. The Virtual Machine Manager lists the percentage of CPU in use for all virtual machines on your
system.

Figure 26.25. Displaying CPU usage

26.13. Displaying memory usage
To view the memory usage for all virtual machines on your system:

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

334

1. From the View menu, select the Memory Usage check box.

Figure 26.26. Selecting Memory Usage

2. The Virtual Machine Manager lists the percentage of memory in use (in megabytes) for all virtual
machines on your system.

Figure 26.27. Displaying memory usage

26.14. Managing a virtual network
To configure a virtual network on your system:

Managing a virtual network

335

1. From the Edit menu, select Host Details.

Figure 26.28. Selecting a host's details

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

336

2. This will open the Host Details menu. Click the Virtual Networks tab.

Figure 26.29. Virtual network configuration

3. All available virtual networks are listed on the left-hand box of the menu. You can edit the
configuration of a virtual network by selecting it from this box and editing as you see fit.

26.15. Creating a virtual network
To create a virtual network on your system:

Creating a virtual network

337

1. Open the Host Details menu (refer to Section 26.14, “Managing a virtual network”) and click the
Add button.

Figure 26.30. Virtual network configuration

This will open the Create a new virtual network menu. Click Forward to continue.

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

338

Figure 26.31. Creating a new virtual network

Creating a virtual network

339

2. Enter an appropriate name for your virtual network and click Forward.

Figure 26.32. Naming your virtual network

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

340

3. Enter an IPv4 address space for your virtual network and click Forward.

Figure 26.33. Choosing an IPv4 address space

Creating a virtual network

341

4. Define the DHCP range for your virtual network by specifying a Start and End range of IP
addresses. Click Forward to continue.

Figure 26.34. Selecting the DHCP range

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

342

5. Select how the virtual network should connect to the physical network.

Figure 26.35. Connecting to physical network

If you select Forwarding to physical network, choose whether the Destination should be NAT
to any physical device or NAT to physical device eth0.

Click Forward to continue.

Creating a virtual network

343

6. You are now ready to create the network. Check the configuration of your network and click
Finish.

Figure 26.36. Ready to create network

Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)

344

7. The new virtual network is now available in the Virtual Network tab of the Host Details menu.

Figure 26.37. New virtual network is now available

Chapter 27.

345

The xm command quick reference
The xm command can manage the Xen hypervisor. Most operations can be performed with the libvirt
tools, virt-manager application or the virsh command. The xm command does not have the error
checking capacity of the libvirt tools and should not be used for tasks the libvirt tools support.

There are a few operations which currently can not be performed using virt-manager. Some options
for other Xen implementations of the xm command do not work in Red Hat Enterprise Linux 5. The list
below provides an overview of command options available and unavailable.

Warning

It is advised to use virsh or virt-manager instead of xm. The xm command does not handle
error checking or configuration file errors very well and mistakes can lead to system instability or
errors in virtual machines. Editing Xen configuration files manually is dangerous and should be
avoided. Use this chapter at your own risk.

Basic management options
The following are basic and commonly used xm commands:

• xm help [--long]: view available options and help text.

• use the xm list command to list active domains:

$ xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 520 2 r----- 1275.5
r5b2-mySQL01 13 500 1 -b---- 16.1

• xm create [-c] DomainName/ID: start a virtual machine. If the -c option is used, the start up
process will attach to the guest's console.

• xm console DomainName/ID: attach to a virtual machine's console.

• xm destroy DomainName/ID: terminates a virtual machine , similar to a power off.

• xm reboot DomainName/ID: reboot a virtual machine, runs through the normal system shut
down and start up process.

• xm shutdown DomainName/ID: shut down a virtual machine, runs a normal system shut down
procedure.

• xm pause

• xm unpause

• xm save

• xm restore

• xm migrate

Chapter 27. The xm command quick reference

346

Resource management options
Use the following xm commands to manage resources:

• xm mem-set

• use the xm vcpu-list to list virtualized CPU affinities:

$ xm vcpu-list
Name ID VCPUs CPU State Time(s) CPU Affinity
Domain-0 0 0 0 r-- 708.9 any cpu
Domain-0 0 1 1 -b- 572.1 any cpu
r5b2-mySQL01 13 0 1 -b- 16.1 any cpu

• xm vcpu-pin

• xm vcpu-set

• use the xm sched-credit command to display scheduler parameters for a given domain:

$ xm sched-credit -d 0
{'cap': 0, 'weight': 256}
$ xm sched-credit -d 13
{'cap': 25, 'weight': 256}

Monitoring and troubleshooting options
Use the following xm commands for monitoring and troubleshooting:

• xm top

• xm dmesg

• xm info

• xm log

• use the xm uptime to display the uptime of guests and hosts:

$ xm uptime
Name ID Uptime
Domain-0 0 3:42:18
r5b2-mySQL01 13 0:06:27

• xm sysrq

• xm dump-core

• xm rename

• xm domid

• xm domname

Currently unsupported options
The xm vnet-list is currently unsupported.

Chapter 28.

347

Configuring the Xen kernel boot
parameters
The GNU Grand Unified Boot Loader (GRUB) is a program for booting various installed operating
systems or kernels. GRUB also allows the user to pass arguments to the kernel. The GRUB
configuration file (located in /boot/grub/grub.conf) creates the list of operating systems the
GRUB boot menu interface. When you install the kernel-xen RPM, a script adds the kernel-xen
entry to the GRUB configuration file which boots kernel-xen by default. Edit the grub.conf file to
modify the default kernel or to add additional kernel parameters.

title Red Hat Enterprise Linux Server (2.6.18-3.el5xen)
root (hd0,0)
 kernel /xen.gz.-2.6.18-3.el5
 module /vmlinuz-2.6..18-3.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 module /initrd-2.6.18-3. el5xenxen.img

If you set your Linux grub entries to reflect this example, the boot loader loads the hypervisor,
initrd image, and Linux kernel. Since the kernel entry is on top of the other entries, the kernel loads
into memory first. The boot loader sends, and receives, command line arguments to and from the
hypervisor and Linux kernel. This example entry shows how you would restrict the Dom0 linux kernel
memory to 800 MB.

title Red Hat Enterprise Linux Server (2.6.18-3.el5xen)
root (hd0,0)
 kernel /xen.gz.-2.6.18-3.el5 dom0_mem=800M
 module /vmlinuz-2.6..18-3.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 module /initrd-2.6.18-3. el5xenxen.img

You can use these GRUB parameters to configure the Virtualization hypervisor:

mem

This limits the amount of memory that is available to the hypervisor kernel.

com1=115200, 8n1

This enables the first serial port in the system to act as serial console (com2 is assigned for the next
port, and so on).

dom0_mem

This limits the memory available for the hypervisor.

dom0_max_vcpus

This limits the amount of CPUs visible to the Xen domain0.

acpi

This switches the ACPI hypervisor to the hypervisor and domain0. The ACPI parameter options
include:

Chapter 28. Configuring the Xen kernel boot parameters

348

/* **** Linux config options: propagated to domain0 ****/
/* "acpi=off": Disables both ACPI table parsing and interpreter. */
/* "acpi=force": Overrides the disable blacklist. */
/* "acpi=strict": Disables out-of-spec workarounds. */
/* "acpi=ht": Limits ACPI from boot-time to enable HT. */
/* "acpi=noirq": Disables ACPI interrupt routing. */

noacpi

This disables ACPI for interrupt delivery.

Chapter 29.

349

Configuring ELILO
ELILO is the boot loader used on EFI-based systems, notably Itanium®. Similar to the GRUB, the
boot loader on x86 and x86-64 systems, ELILO allows the user to select which installed kernel to load
during the system boot sequence. ELILO also allows the user to pass arguments to the kernel. The
ELILO configuration file, which is located in the EFI boot partition and symbolically linked to /etc/
elilo.conf, contains a list of global options and image stanzas. When you install the kernel-xen
RPM, a post install script adds the appropriate image stanza to the elilo.conf.

ELILO

This section on ELILO is for systems running the Xen kernel on the Intel Itanium architecture.

The ELILO configuration file has two sections:

• Global options that affect the behavior of ELILO and all the entries. Typically there is no need to
change these from the default values.

• Image stanzas that define a boot selection along with associated options.

Here is a sample image stanza in elilo.conf:

image=vmlinuz-2.6.18-92.el5xen
 vmm=xen.gz-2.6.18-92.el5
 label=linux
 initrd=initrd-2.6.18-92.el5xen.img
 read-only
 root=/dev/VolGroup00/rhel5_2
 append="-- rhgb quiet"

The image parameter indicates the following lines apply to a single boot selection. This stanza defines
a hypervisor (vmm), initrd, and command line arguments (read-only, root and append) to the
hypervisor and kernel. When ELILO is loaded during the boot sequence, the image is labeled linux.

ELILO translates read-only to the kernel command line option ro which causes the root file system
to be mounted read-only until the initscripts mount the root drive as read-write. ELILO copies the
"root" line to the kernel command line. These are merged with the "append" line to build a complete
command line:

"-- root=/dev/VolGroup00/rhel5_2 ro rhgb quiet"

The -- symbols delimit hypervisor and kernel arguments. The hypervisor arguments come first,
then the -- delimiter, followed by the kernel arguments. The hypervisor does not usually have any
arguments.

Chapter 29. Configuring ELILO

350

Technical note

ELILO passes the entire command line to the hypervisor. The hypervisor divides the content and
passes the kernel options to the kernel.

To customize the hypervisor, insert parameters before the --. An example of the hypervisor memory
(mem) parameter and the quiet parameter for the kernel:

append="dom0_mem=2G -- quiet"

ELILO hypervisor parameters
Parameter Description
mem= The mem parameter defines the hypervisor maximum RAM usage.

Any additional RAM in the system is ignored. The parameter
may be specified with a B, K, M or G suffix; representing bytes,
kilobytes, megabytes and gigabytes respectively. If no suffix is
specified the default unit is kilobytes.

dom0_mem= dom0_mem= sets the amount of RAM to allocate to dom0. The
same suffixes are respected as for the mem parameter above.
The default in Red Hat Enterprise Linux 5.2 on Itanium® is 4G.

dom0_max_vcpus= dom0_max_vcpus= sets the number of CPUs to allocate to
the hypervisor. The default in Red Hat Enterprise Linux 5.2 on
Itanium® is 4.

com1=<baud>,DPS,<io_base>,<irq>com1= sets the parameters for the first serial line. For example,
com1=9600,8n1,0x408,5. The io_base and irq options
can be omitted to leave them as the standard defaults. The baud
parameter can be set as auto to indicate the boot loader setting
should be preserved. The com1 parameter can be omitted if
serial parameters are set as global options in ELILO or in the EFI
configuration.

com2=<baud>,DPS,<io_base>,<irq>Set the parameters for the second serial line. Refer the
description of the com1 parameter above.

console=<specifier_list> The console is a comma delimited preference list for the
console options. Options include vga, com1 and com2. This
setting should be omitted because the hypervisor attempts to
inherit EFI console settings.

For more information on ELILO parameters

A complete list of ELILO parameters are available from XenSource1.

1 http://tx.downloads.xensource.com/downloads/docs/user/#SECTION04130000000000000000

http://tx.downloads.xensource.com/downloads/docs/user/#SECTION04130000000000000000
http://tx.downloads.xensource.com/downloads/docs/user/#SECTION04130000000000000000

351

A modified example of the configuration above, showing syntax for appending memory and cpu
allocation parameters to the hypervisor:

image=vmlinuz-2.6.18-92.el5xen
 vmm=xen.gz-2.6.18-92.el5
 label=linux
 initrd=initrd-2.6.18-92.el5xen.img
 read-only
 root=/dev/VolGroup00/rhel5_2
 append="dom0_mem=2G dom0_max_vcpus=2 --"

Additionally this example removes the kernel parameters "rhgb quiet" so that kernel and
initscript output are generated on the console. Note the double-dash remains so that the append
line is correctly interpreted as hypervisor arguments.

352

Chapter 30.

353

libvirt configuration reference
This chapter provides is a references for various parameters of libvirt XML configuration files

Table 30.1. libvirt configuration files

Item Description

pae Specifies the physical address extension
configuration data.

apic Specifies the advanced programmable interrupt
controller configuration data.

memory Specifies the memory size in megabytes.

vcpus Specifies the numbers of virtual CPUs.

console Specifies the port numbers to export the domain
consoles to.

nic Specifies the number of virtual network
interfaces.

vif Lists the randomly-assigned MAC addresses and
bridges assigned to use for the domain's network
addresses.

disk Lists the block devices to export to the domain
and exports physical devices to domain with read
only access.

dhcp Enables networking using DHCP.

netmask Specifies the configured IP netmasks.

gateway Specifies the configured IP gateways.

acpi Specifies the advanced configuration power
interface configuration data.

354

Chapter 31.

355

Xen configuration files
Red Hat Enterprise Linux uses libvirt configuration files for most tasks. Some users may need Xen
configuration files which contain the following standard variables. Configuration items within these files
must be enclosed in single quotes('). These configuration files reside in the /etc/xen directory.

The table below, Table 31.1, “Xen configuration file reference”, is formatted output from xm create
--help_config.

Table 31.1. Xen configuration file reference

Parameter Description

vncpasswd=NAME Password for VNC console on HVM domain.

vncviewer=no | yes Spawn a vncviewer listening for a vnc server
in the domain. The address of the vncviewer is
passed to the domain on the kernel command
line using VNC_SERVER=<host>:<port>. The
port used by vnc is 5500 + DISPLAY. A display
value with a free port is chosen if possible. Only
valid when vnc=1.

vncconsole=no | yes Spawn a vncviewer process for the domain's
graphical console. Only valid when vnc=1.

name=NAME Domain name. Must be unique.

bootloader=FILE Path to boot loader.

bootargs=NAME Arguments to pass to boot loader.

bootentry=NAME DEPRECATED. Entry to boot via boot loader.
Use bootargs.

kernel=FILE Path to kernel image.

ramdisk=FILE Path to ramdisk.

features=FEATURES Features to enable in guest kernel

builder=FUNCTION Function to use to build the domain.

memory=MEMORY Domain memory in MB.

maxmem=MEMORY Maximum domain memory in MB.

shadow_memory=MEMORY Domain shadow memory in MB.

cpu=CPU CPU which hosts VCPU0.

cpus=CPUS CPUS to run the domain on.

pae=PAE Disable or enable PAE of HVM domain.

acpi=ACPI Disable or enable ACPI of HVM domain.

apic=APIC Disable or enable APIC of HVM domain.

vcpus=VCPUs The number of Virtual CPUS in domain.

cpu_weight=WEIGHT Set the new domain's cpu weight. WEIGHT is a
float that controls the domain's share of the cpu.

restart=onreboot | always | never Deprecated. Use on_poweroff, on_reboot,
and on_crash instead. Whether the domain
should be restarted on exit. - onreboot: restart
on exit with shutdown code reboot - always:

Chapter 31. Xen configuration files

356

Parameter Description
always restart on exit, ignore exit code - never:
never restart on exit, ignore exit code

on_poweroff=destroy | restart |
preserve | destroy

Behavior when a domain exits with reason
'poweroff'. - destroy: the domain is cleaned
up as normal; - restart: a new domain is started
in place of the old one; - preserve: no clean-up
is done until the domain is manually destroyed
(using xm destroy, for example); - rename-restart:
the old domain is not cleaned up, but is renamed
and a new domain started in its place.

on_reboot=destroy | restart |
preserve | destroy

Behavior when a domain exits with reason
'reboot'. - destroy: the domain is cleaned up
as normal; - restart: a new domain is started in
place of the old one; - preserve: no clean-up
is done until the domain is manually destroyed
(using xm destroy, for example); - rename-
restart: the old domain is not cleaned up, but is
renamed and a new domain started in its place.

on_crash=destroy | restart | preserve
| destroy

Behavior when a domain exits with reason
'crash'. - destroy: the domain is cleaned up as
normal; - restart: a new domain is started in
place of the old one; - preserve: no clean-up
is done until the domain is manually destroyed
(using xm destroy, for example); - rename-
restart: the old domain is not cleaned up, but is
renamed and a new domain started in its place.

blkif=no | yes Make the domain a block device backend.

netif=no | yes Make the domain a network interface backend.

tpmif=no | yes Make the domain a TPM interface backend.

disk=phy:DEV,VDEV,MODE[,DOM] Add a disk device to a domain. The physical
device is DEV, which is exported to the domain
as VDEV. The disk is read-only if MODE is r, read-
write if MODE is w. If DOM is specified it defines the
backend driver domain to use for the disk. The
option may be repeated to add more than one
disk.

pci=BUS:DEV.FUNC Add a PCI device to a domain, using
given parameters (in hex). For example
pci=c0:02.1a. The option may be repeated to
add more than one pci device.

ioports=FROM[-TO] Add a legacy I/O range to a domain,
using given params (in hex). For example
ioports=02f8-02ff. The option may be
repeated to add more than one i/o range.

irq=IRQ Add an IRQ (interrupt line) to a domain. For
example irq=7. This option may be repeated to
add more than one IRQ.

357

Parameter Description

usbport=PATH Add a physical USB port to a domain, as
specified by the path to that port. This option
may be repeated to add more than one port.

vfb=type={vnc,sdl}, vncunused=1,
vncdisplay=N,

vnclisten=ADDR, display=DISPLAY,

xauthority=XAUTHORITY,
vncpasswd=PASSWORD,

keymap=KEYMAP

Make the domain a framebuffer backend. The
backend type should be either sdl or vnc. For
type=vnc, connect an external vncviewer. The
server will listen on ADDR (default 127.0.0.1)
on port N+5900. N defaults to the domain id.
If vncunused=1, the server will try to find
an arbitrary unused port above 5900. For
type=sdl, a viewer will be started automatically
using the given DISPLAY and XAUTHORITY,
which default to the current user's ones.

vif=type=TYPE, mac=MAC,
bridge=BRIDGE, ip=IPADDR,

script=SCRIPT, backend=DOM,
vifname=NAME

Add a network interface with the given MAC
address and bridge. The vif is configured by
calling the given configuration script. If type
is not specified, default is netfront not ioemu
device. If mac is not specified a random MAC
address is used. If not specified then the network
backend chooses its own MAC address. If bridge
is not specified the first bridge found is used. If
script is not specified the default script is used.
If backend is not specified the default backend
driver domain is used. If vifname is not specified
the backend virtual interface will have name
vifD.N where D is the domain id and N is the
interface id. This option may be repeated to add
more than one vif. Specifying vifs will increase
the number of interfaces as needed.

vtpm=instance=INSTANCE,backend=DOM Add a TPM interface. On the backend side use
the given instance as virtual TPM instance. The
given number is merely the preferred instance
number. The hotplug script will determine which
instance number will actually be assigned to
the domain. The association between virtual
machine and the TPM instance number can be
found in /etc/xen/vtpm.db. Use the backend
in the given domain.

access_control=policy=POLICY,label=LABELAdd a security label and the security policy
reference that defines it. The local ssid reference
is calculated when starting or resuming the
domain. At this time, the policy is checked
against the active policy as well. This way,
migrating through the save or restore functions
are covered and local labels are automatically
created correctly on the system where a domain
is started or resumed.

nics=NUM DEPRECATED. Use empty vif entries instead.
Set the number of network interfaces. Use the vif
option to define interface parameters, otherwise

Chapter 31. Xen configuration files

358

Parameter Description
defaults are used. Specifying vifs will increase
the number of interfaces as needed.

root=DEVICE Set the root= parameter on the kernel
command line. Use a device, e.g. /dev/sda1,
or /dev/nfs for NFS root.

extra=ARGS Set extra arguments to append to the kernel
command line.

ip=IPADDR Set the kernel IP interface address.

gateway=IPADDR Set the kernel IP gateway.

netmask=MASK Set the kernel IP netmask.

hostname=NAME Set the kernel IP hostname.

interface=INTF Set the kernel IP interface name.

dhcp=off|dhcp Set the kernel dhcp option.

nfs_server=IPADDR Set the address of the NFS server for NFS root.

nfs_root=PATH Set the path of the root NFS directory.

device_model=FILE Path to device model program.

fda=FILE Path to fda

fdb=FILE Path to fdb

serial=FILE Path to serial or pty or vc

localtime=no | yes Is RTC set to localtime

keymap=FILE Set keyboard layout used

usb=no | yes Emulate USB devices

usbdevice=NAME Name of a USB device to add

stdvga=no | yes Use std vga or Cirrus Logic graphics

isa=no | yes Simulate an ISA only system

boot=a|b|c|d Default boot device

nographic=no | yes Should device models use graphics?

soundhw=audiodev Should device models enable audio device?

vnc Should the device model use VNC?

vncdisplay VNC display to use

vnclisten Address for VNC server to listen on.

vncunused Try to find an unused port for the VNC server.
Only valid when vnc=1.

sdl Should the device model use SDL?

display=DISPLAY X11 display to use

xauthority=XAUTHORITY X11 Authority to use

uuid xenstore UUID (universally unique identifier)
to use. One will be randomly generated if this
option is not set, just like MAC addresses for
virtual network interfaces. This must be a unique
value across the entire cluster.

359

Table 31.3, “Configuration parameter default values” lists all configuration parameters available, the
Python parser function which sets the value and default values. The setter function gives an idea of
what the parser does with the values you specify. It reads these as Python values, then feeds them to
a setter function to store them. If the value is not valid Python, you get an obscure error message. If
the setter rejects your value, you should get a reasonable error message, except it appears to get lost
somehow, along with your bogus setting. If the setter accepts, but the value is incorrect the application
may fail.

Table 31.2. Python functions which set parameter values

Parser function Valid arguments

set_bool Accepted values:

• yes

• y

• no

• yes

set_float Accepts a floating point number with Python's
float(). For example:

• 3.14

• 10.

• .001

• 1e100

• 3.14e-10

set_int Accepts an integer with Python's int().

set_value accepts any Python value.

append_value accepts any Python value, and appends it to the
previous value which is stored in an array.

Table 31.3. Configuration parameter default values

Parameter Parser function Default value

name setter default value

vncpasswd set_value None

vncviewer set_bool None

vncconsole set_bool None

name set_value None

bootloader set_value None

bootargs set_value None

bootentry set_value None

kernel set_value None

ramdisk set_value ''

features set_value ''

builder set_value 'linux'

Chapter 31. Xen configuration files

360

Parameter Parser function Default value

memory set_int 128

maxmem set_int None

shadow_memory set_int 0

cpu set_int None

cpus set_value None

pae set_int 0

acpi set_int 0

apic set_int 0

vcpus set_int 1

cpu_weight set_float None

restart set_value None

on_poweroff set_value None

on_reboot set_value None

on_crash set_value None

blkif set_bool 0

netif set_bool 0

tpmif append_value 0

disk append_value []

pci append_value []

ioports append_value []

irq append_value []

usbport append_value []

vfb append_value []

vif append_value []

vtpm append_value []

access_control append_value []

nics set_int -1

root set_value ''

extra set_value ''

ip set_value ''

gateway set_value ''

netmask set_value ''

hostname set_value ''

interface set_value "eth0"

dhcp set_value 'off'

nfs_server set_value None

nfs_root set_value None

device_model set_value ''

361

Parameter Parser function Default value

fda set_value ''

fdb set_value ''

serial set_value ''

localtime set_bool 0

keymap set_value ''

usb set_bool 0

usbdevice set_value ''

stdvga set_bool 0

isa set_bool 0

boot set_value 'c'

nographic set_bool 0

soundhw set_value ''

vnc set_value None

vncdisplay set_value None

vnclisten set_value None

vncunused set_bool 1

sdl set_value None

display set_value None

xauthority set_value None

uuid set_value None

362

Part VII. Tips and Tricks

Tips and Tricks to
Enhance Productivity

These chapters contain useful hints and tips to improve virtualization performance, scale and stability.

Chapter 32.

365

Tips and tricks
This chapter contain useful hints and tips to improve virtualization performance, scale and stability.

32.1. Automatically starting guests
This section covers how to make virtualized guests start automatically during the host system's boot
phase.

This example uses virsh to set a guest, TestServer, to automatically start when the host boots.

virsh autostart TestServer
Domain TestServer marked as autostarted

The guest now automatically starts with the host.

To stop a guest automatically booting use the --disable parameter

virsh autostart --disable TestServer
Domain TestServer unmarked as autostarted

The guest no longer automatically starts with the host.

32.2. Changing between the KVM and Xen hypervisors
This section covers changing between the KVM and Xen hypervisors.

Red Hat only supports one active hypervisor at a time.

Migrating virtualized guests between hypervisors

Presently, there is no application for switching Xen-based guests to KVM or KVM-based guests to
Xen. Guests can only be used on the hypervisor type that they were created on.

Warning

This procedure is only available for the Intel 64 or AMD64 version of Red Hat Enterprise Linux
5.4 or newer. No other configurations or Red Hat Enterprise Linux versions are supported. KVM
is not available in versions earlier than Red Hat Enterprise Linux 5.4.

32.2.1. Xen to KVM
The following procedure covers changing from the Xen hypervisor to the KVM hypervisor. This
procedure assumes the kernel-xen package is installed and enabled.

1. Install the KVM package
Install the kvm package if you have not already done so.

Chapter 32. Tips and tricks

366

yum install kvm

2. Verify which kernel is in use
The kernel-xen package may be installed. Use the uname command to determine which kernel is
running:

$ uname -r
2.6.18-159.el5xen

The present kernel, "2.6.18-159.el5xen", is running on the system. If the default kernel,
"2.6.18-159.el5", is running you can skip the substep.

• Changing the Xen kernel to the default kernel
The grub.conf file determines which kernel is booted. To change the default kernel edit the
/boot/grub/grub.conf file as shown below.

 default=1
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-159.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-159.el5 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 initrd /initrd-2.6.18-159.el5.img
title Red Hat Enterprise Linux Server (2.6.18-159.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.18-159.el5
 module /vmlinuz-2.6.18-159.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb
 quiet
 module /initrd-2.6.18-159.el5xen.img

Notice the default=1 parameter. This is instructing the GRUB boot loader to boot the second
entry, the Xen kernel. Change the default to 0 (or the number for the default kernel):

 default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-159.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-159.el5 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 initrd /initrd-2.6.18-159.el5.img
title Red Hat Enterprise Linux Server (2.6.18-159.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.18-159.el5
 module /vmlinuz-2.6.18-159.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb
 quiet
 module /initrd-2.6.18-159.el5xen.img

3. Reboot to load the new kernel
Reboot the system. The computer will restart with the default kernel. The KVM module should be
automatically loaded with the kernel. Verify KVM is running:

$ lsmod | grep kvm
kvm_intel 85992 1

KVM to Xen

367

kvm 222368 2 ksm,kvm_intel

The kvm module and either the kvm_intel module or the kvm_amd module are present if
everything worked.

32.2.2. KVM to Xen
The following procedure covers changing from the KVM hypervisor to the Xen hypervisor. This
procedure assumes the kvm package is installed and enabled.

1. Install the Xen packages
Install the kernel-xen and xen package if you have not already done so.

yum install kernel-xen xen

The kernel-xen package may be installed but disabled.

2. Verify which kernel is in use
Use the uname command to determine which kernel is running.

$ uname -r
2.6.18-159.el5

The present kernel, "2.6.18-159.el5", is running on the system. This is the default kernel.
If the kernel has xen on the end (for example, 2.6.18-159.el5xen) then the Xen kernel is
running and you can skip the substep.

• Changing the default kernel to the Xen kernel
The grub.conf file determines which kernel is booted. To change the default kernel edit the
/boot/grub/grub.conf file as shown below.

 default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-159.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-159.el5 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 initrd /initrd-2.6.18-159.el5.img
title Red Hat Enterprise Linux Server (2.6.18-159.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.18-159.el5
 module /vmlinuz-2.6.18-159.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb
 quiet
 module /initrd-2.6.18-159.el5xen.img

Notice the default=0 parameter. This is instructing the GRUB boot loader to boot the first
entry, the default kernel. Change the default to 1 (or the number for the Xen kernel):

 default=1
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.18-159.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-159.el5 ro root=/dev/VolGroup00/LogVol00 rhgb quiet

Chapter 32. Tips and tricks

368

 initrd /initrd-2.6.18-159.el5.img
title Red Hat Enterprise Linux Server (2.6.18-159.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.18-159.el5
 module /vmlinuz-2.6.18-159.el5xen ro root=/dev/VolGroup00/LogVol00 rhgb
 quiet
 module /initrd-2.6.18-159.el5xen.img

3. Reboot to load the new kernel
Reboot the system. The computer will restart with the Xen kernel. Verify with the uname
command:

$ uname -r
2.6.18-159.el5xen

If the output has xen on the end the Xen kernel is running.

32.3. Using qemu-img
The qemu-img command line tool is used for formatting various file systems used by Xen and KVM.
qemu-img should be used for formatting virtualized guest images, additional storage devices and
network storage. qemu-img options and usages are listed below.

Formatting and creating new images or devices
Create the new disk image filename of size size and format format.

qemu-img create [-6] [-e] [-b base_image] [-f format] filename [size]

If base_image is specified, then the image will record only the differences from base_image. No size
needs to be specified in this case. base_image will never be modified unless you use the "commit"
monitor command.

Convert an existing image to another format
The convert option is used for converting a recognized format to another image format.

Command format:

qemu-img convert [-c] [-e] [-f format] filename [-O output_format] output_filename

Convert the disk image filename to disk image output_filename using format output_format.
The disk image can be optionally encrypted with the -e option or compressed with the -c option.

Only the format "qcow" supports encryption or compression. the compression is read-only. it means
that if a compressed sector is rewritten, then it is rewritten as uncompressed data.

The encryption uses the AES format with very secure 128-bit keys. Use a long password (over 16
characters) to get maximum protection.

Image conversion is also useful to get smaller image when using a format which can grow, such as
qcow or cow. The empty sectors are detected and suppressed from the destination image.

getting image information
the info parameter displays information about a disk image. the format for the info option is as
follows:

Overcommitting Resources

369

qemu-img info [-f format] filename

give information about the disk image filename. use it in particular to know the size reserved on disk
which can be different from the displayed size. if vm snapshots are stored in the disk image, they are
displayed too.

Supported formats
The format of an image is usually guessed automatically. The following formats are supported:

 raw
Raw disk image format (default). This format has the advantage of being simple and easily
exportable to all other emulators. If your file system supports holes (for example in ext2 or ext3
on Linux or NTFS on Windows), then only the written sectors will reserve space. Use qemu-img
info to know the real size used by the image or ls -ls on Unix/Linux.

 qcow2
QEMU image format, the most versatile format. Use it to have smaller images (useful if your file
system does not supports holes, for example: on Windows), optional AES encryption, zlib based
compression and support of multiple VM snapshots.

 qcow
Old QEMU image format. Only included for compatibility with older versions.

 cow
User Mode Linux Copy On Write image format. The cow format is included only for compatibility
with previous versions. It does not work with Windows.

 vmdk
VMware 3 and 4 compatible image format.

 cloop
Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM images
present for example in the Knoppix CD-ROMs.

32.4. Overcommitting Resources
The KVM hypervisor supports overcommitting CPUs and memory. Overcommitting is the process of
allocating more virtualized CPUs or memory than there are physical resources on the system. CPU
overcommit allows under-utilized virtualized servers or desktops to run on fewer servers which saves
power and money.

Xen support

Memory overcommitting is not supported for the Xen hypervisor, however CPU overcommitting is
supported.

Overcommitting memory
Most operating systems and applications do not use 100% of the available RAM all the time. This
behavior can be exploited with KVM to use more memory for virtualized guests than what is physically
available.

Chapter 32. Tips and tricks

370

When using KVM, virtual machines operate as Linux processes. Guests on the KVM hypervisor do not
have blocks of physical RAM assigned to them, instead they function as processes. Each process in
a Linux system is allocated memory when it requests more memory. In a similar way, KVM allocates
memory for guests when the guest requests more or less memory. The guest only uses slightly more
physical memory than the virtualized operating system appears to use.

When physical memory is nearly completely used or a process is inactive for some time, Linux moves
the process's memory to swap. Swap is usually a partition on a hard disk drive or solid state drive
which Linux uses to extend virtual memory. Swap is significantly slower than RAM.

As KVM virtual machines are Linux processes, memory used by virtualized guests can be put into
swap if the guest is idle or not in heavy use. Memory can be committed over the total size of the swap
and physical RAM. This can cause issues if virtualized guests use their total RAM. Without sufficient
memory and swap space for the virtual machine processes, the system can run completely out of
memory, leading to the failure of one or more virtual machine processes.

Warning

If sufficient swap is not available guest operating systems will be forcibly shut down. This may
leave guests inoperable. Avoid this by never overcommitting more memory than there is swap
available.

The swap partition is used for swapping underused memory to the hard drive to speed up memory
performance. The default size of the swap partition is calculated from amount of RAM and overcommit
ratio. It is recommended to make your swap partition larger if you intend to overcommit memory with
KVM. A recommended overcommit ratio is 50% (0.5). The formula used is:

(0.5 * RAM) + (overcommit ratio * RAM) = Recommended swap size

Red Hat Knowledgebase1 has an article on safely and efficiently determining the size of the swap
partition.

Overcommitting guests by swapping out temporarily unused guest memory can be very slow, due to
the IO latency introduced by disk seek times. However, Red Hat Enterprise Linux virtualization with
KVM can often avoid this disk IO penalty by merging multiple pages with identical content into the
same physical pages. This is done by the KSM (Kernel Samepage Merging) kernel process, which
scans memory to find identical pages. The KSM kernel process uses CPU time to avoid disk IO. This
tradeoff is often beneficial in workloads with many smaller, similar guests.

It is possible to run with an overcommit ratio of ten times the number of virtualized guests over the
amount of physical RAM in the system. This only works with certain application loads (for example
desktop virtualization with under 100% usage). Setting overcommit ratios is not a hard formula, you
must test and customize the ratio for your environment.

Overcommitting virtualized CPUs
The KVM hypervisor supports overcommitting virtualized CPUs. Virtualized CPUs can be
overcommitted as far as load limits of virtualized guests allow. Use caution when overcommitting
VCPUs as loads near 100% may cause dropped requests or unusable response times.

1 http://kbase.redhat.com/faq/docs/DOC-15252

http://kbase.redhat.com/faq/docs/DOC-15252
http://kbase.redhat.com/faq/docs/DOC-15252

Modifying /etc/grub.conf

371

Virtualized CPUs are overcommitted best when each virtualized guest only has a single VCPU. The
Linux scheduler is very efficient with this type of load. KVM should safely support guests with loads
under 100% at a ratio of five VCPUs. Overcommitting single VCPU virtualized guests is not an issue.

You cannot overcommit symmetric multiprocessing guests on more than the physical number of
processing cores. For example a guest with four VCPUs should not be run on a host with a dual
core processor. Overcommitting symmetric multiprocessing guests in over the physical number of
processing cores will cause significant performance degradation.

Assigning guests VCPUs up to the number of physical cores is appropriate and works as expected.
For example, running virtualized guests with four VCPUs on a quad core host. Guests with less than
100% loads should function effectively in this setup.

Always test first

Do not overcommit memory or CPUs in a production environment without extensive testing.
Applications which use 100% of memory or processing resources may become unstable in
overcommitted environments. Test before deploying.

32.5. Modifying /etc/grub.conf
This section describes how to safely and correctly change your /etc/grub.conf file to use the
virtualization kernel. You must use the xen kernel to use the Xen hypervisor. Copy your existing
xen kernel entry make sure you copy all of the important lines or your system will panic upon boot
(initrd will have a length of '0'). If you require xen hypervisor specific values you must append them
to the xen line of your grub entry.

The output below is an example of a grub.conf entry from a system running the kernel-xen package.
The grub.conf on your system may vary. The important part in the example below is the section
from the title line to the next new line.

#boot=/dev/sda
default=0
timeout=15
#splashimage=(hd0,0)/grub/splash.xpm.gz hiddenmenu
serial --unit=0 --speed=115200 --word=8 --parity=no --stop=1
terminal --timeout=10 serial console

title Red Hat Enterprise Linux Server (2.6.17-1.2519.4.21.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.17-1.2519.4.21.el5 com1=115200,8n1
 module /vmlinuz-2.6.17-1.2519.4.21.el5xen ro root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.17-1.2519.4.21.el5xen.img

An important point regarding editing grub.conf...

Your grub.conf could look very different if it has been manually edited before or copied from an
example. Read Chapter 28, Configuring the Xen kernel boot parameters for more information on
using virtualization and grub.

Chapter 32. Tips and tricks

372

To set the amount of memory assigned to your host system at boot time to 256MB you need to append
dom0_mem=256M to the xen line in your grub.conf. A modified version of the grub configuration file
in the previous example:

#boot=/dev/sda
default=0
timeout=15
#splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
serial --unit=0 --speed=115200 --word=8 --parity=no --stop=1
terminal --timeout=10 serial console

title Red Hat Enterprise Linux Server (2.6.17-1.2519.4.21.el5xen)
 root (hd0,0)
 kernel /xen.gz-2.6.17-1.2519.4.21.el5 com1=115200,8n1 dom0_mem=256MB
 module /vmlinuz-2.6.17-1.2519.4.21.el5xen ro
 root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.17-1.2519.4.21.el5xen.img

32.6. Verifying virtualization extensions
Use this section to determine whether your system has the hardware virtualization extensions.
Virtualization extensions (Intel VT or AMD-V) are required for full virtualization.

Can I use virtualization without the virtualization extensions?

If hardware virtualization extensions are not present you can use Xen para-virtualization with the
Red Hat kernel-xen package.

1. Run the following command to verify the CPU virtualization extensions are available:

$ grep -E 'svm|vmx' /proc/cpuinfo

2. Analyze the output.

• The following output contains a vmx entry indicating an Intel processor with the Intel VT
extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
 dts acpi mmx fxsr sse sse2 ss ht tm syscall lm constant_tsc pni monitor ds_cpl
 vmx est tm2 cx16 xtpr lahf_lm

• The following output contains an svm entry indicating an AMD processor with the AMD-V
extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
 mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt lm 3dnowext 3dnow pni cx16
 lahf_lm cmp_legacy svm cr8legacy ts fid vid ttp tm stc

If any output is received, the processor has the hardware virtualization extensions. However in
some circumstances manufacturers disable the virtualization extensions in BIOS.

Accessing data from a guest disk image

373

The "flags:" content may appear multiple times for each hyperthread, core or CPU on the
system.

The virtualization extensions may be disabled in the BIOS. If the extensions do not appear or full
virtualization does not work refer to Procedure 35.1, “Enabling virtualization extensions in BIOS”.

3. For users of the KVM hypervisor
If the kvm package is installed. I As an additional check, verify that the kvm modules are loaded in
the kernel:

lsmod | grep kvm

If the output includes kvm_intel or kvm_amd then the kvm hardware virtualization modules are
loaded and your system meets requirements. sudo

Additional output

If the libvirt package is installed, the virsh command can output a full list of virtualization system
capabilities. Run virsh capabilities as root to receive the complete list.

32.7. Accessing data from a guest disk image
There are various methods for accessing the data from guest image files. One common method is to
use the kpartx tool, covered by this section, to mount the guest file system as a loop device which
can then be accessed.

The kpartx command creates device maps from partition tables. Each guest storage image has a
partition table embedded in the file.

The libguestfs and guestfish packages, available from the EPEL2 repository, allow advanced
modification and access to guest file systems. The libguestfs and guestfish packages are not covered
in this section at this time.

Warning

Guests must be offline before their files can be read. Editing or reading files of an active guest is
not possible and may cause data loss or damage.

Procedure 32.1. Accessing guest image data
1. Install the kpartx package.

yum install kpartx

2 http://fedoraproject.org/wiki/EPEL

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL

Chapter 32. Tips and tricks

374

2. Use kpartx to list partition device mappings attached to a file-based storage image. This example
uses a image file named guest1.img.

kpartx -l /var/lib/libvirt/images/guest1.img
loop0p1 : 0 409600 /dev/loop0 63
loop0p2 : 0 10064717 /dev/loop0 409663

guest1 is a Linux guest. The first partition is the boot partition and the second partition is an
EXT3 containing the root partition.

3. Add the partition mappings to the recognized devices in /dev/mapper/.

kpartx -a /var/lib/libvirt/images/guest1.img

• Test that the partition mapping worked. There should be new devices in the /dev/mapper/
directory

ls /dev/mapper/
loop0p1
loop0p2

The mappings for the image are named in the format loopXpY.

4. Mount the loop device which to a directory. If required, create the directory. This example uses /
mnt/guest1 for mounting the partition.

mkdir /mnt/guest1
mount /dev/mapper/loop0p1 /mnt/guest1 -o loop,ro

5. The files are now available for reading in the /mnt/guest1 directory. Read or copy the files.

6. Unmount the device so the guest image can be reused by the guest. If the device is mounted the
guest cannot access the image and therefore cannot start.

umount /mnt/tmp

7. Disconnect the image file from the partition mappings.

kpartx -d /var/lib/libvirt/images/guest1.img

The guest can now be started again.

Accessing data from guest LVM volumes
Many Linux guests use Logical Volume Management (LVM) volumes. Additional steps are required to
read data on LVM volumes on virtual storage images.

1. Add the partition mappings for the guest1.img to the recognized devices in the /dev/mapper/
directory.

kpartx -a /var/lib/libvirt/images/guest1.img

Setting KVM processor affinities

375

2. In this example the LVM volumes are on a second partition. The volumes require a rescan with
the vgscan command to find the new volume groups.

vgscan
Reading all physical volumes . This may take a while...
Found volume group "VolGroup00" using metadata type lvm2

3. Activate the volume group on the partition (called VolGroup00 by default) with the vgchange -
ay command.

vgchange -ay VolGroup00
2 logical volumes in volume group VolGroup00 now active.

4. Use the lvs command to display information about the new volumes. The volume names (the LV
column) are required to mount the volumes.

lvs
LV VG Attr Lsize Origin Snap% Move Log Copy%
LogVol00 VolGroup00 -wi-a- 5.06G
LogVol01 VolGroup00 -wi-a- 800.00M

5. Mount /dev/VolGroup00/LogVol00 in the /mnt/guestboot/ directory.

mount /dev/VolGroup00/LogVol00 /mnt/guestboot

6. The files are now available for reading in the /mnt/guestboot directory. Read or copy the files.

7. Unmount the device so the guest image can be reused by the guest. If the device is mounted the
guest cannot access the image and therefore cannot start.

umount /mnt/

8. Disconnect the volume group VolGroup00

vgchange -an VolGroup00

9. Disconnect the image file from the partition mappings.

kpartx -d /var/lib/libvirt/images/guest1.img

The guest can now be restarted.

32.8. Setting KVM processor affinities
This section covers setting processor and processing core affinities with libvirt for KVM guests.

By default, libvirt provisions guests using the hypervisor's default policy. For most hypervisors,
the policy is to run guests on any available processing core or CPU. There are times when an
explicit policy may be better, in particular for systems with a NUMA (Non-Uniform Memory Access)
architecture. A guest on a NUMA system should be pinned to a processing core so that its memory
allocations are always local to the node it is running on. This avoids cross-node memory transports
which have less bandwidth and can significantly degrade performance.

Chapter 32. Tips and tricks

376

On a non-NUMA systems some form of explicit placement across the hosts’ sockets, cores and
hyperthreads may be more efficient.

Identifying CPU and NUMA topology
The first step in deciding what policy to apply is to determine the host’s memory and CPU topology.
The virsh nodeinfo command provides information about how many sockets, cores and
hyperthreads there are attached a host.

virsh nodeinfo
CPU model: x86_64
CPU(s): 8
CPU frequency: 1000 MHz
CPU socket(s): 2
Core(s) per socket: 4
Thread(s) per core: 1
NUMA cell(s): 1
Memory size: 8179176 kB

This system has eight CPUs, in two sockets, each processor has four cores.

The output shows that that the system has a NUMA architecture. NUMA is more complex and requires
more data to accurately interpret. Use the virsh capabilities to get additional output data on the
CPU configuration.

virsh capabilities
<capabilities>
 <host>
 <cpu>
 <arch>x86_64</arch>
 </cpu>
 <migration_features>
 <live/>
 <uri_transports>
 <uri_transport>tcp</uri_transport>
 </uri_transports>
 </migration_features>
 <topology>
 <cells num='2'>
 <cell id='0'>
 <cpus num='4'>
 <cpu id='0'/>
 <cpu id='1'/>
 <cpu id='2'/>
 <cpu id='3'/>
 </cpus>
 </cell>
 <cell id='1'>
 <cpus num='4'>
 <cpu id='4'/>
 <cpu id='5'/>
 <cpu id='6'/>
 <cpu id='7'/>
 </cpus>
 </cell>
 </cells>
 </topology>
 <secmodel>
 <model>selinux</model>
 <doi>0</doi>
 </secmodel>
 </host>

Setting KVM processor affinities

377

 [Additional XML removed]

</capabilities>

The output shows two NUMA nodes (also know as NUMA cells), each containing four logical CPUs
(four processing cores). This system has two sockets, therefore we can infer that each socket is a
separate NUMA node. For a guest with four virtual CPUs, it would be optimal to lock the guest to
physical CPUs 0 to 3, or 4 to 7 to avoid accessing non-local memory, which are significantly slower
than accessing local memory.

If a guest requires eight virtual CPUs, as each NUMA node only has four physical CPUs, a better
utilization may be obtained by running a pair of four virtual CPU guests and splitting the work between
them, rather than using a single 8 CPU guest. Running across multiple NUMA nodes significantly
degrades performance for physical and virtualized tasks.

Decide which NUMA node can run the guest
Locking a guest to a particular NUMA node offers no benefit if that node does not have sufficient free
memory for that guest. libvirt stores information on the free memory available on each node. Use the
virsh freecell command to display the free memory on all NUMA nodes.

virsh freecell
0: 2203620 kB
1: 3354784 kB

If a guest requires 3 GB of RAM allocated, then the guest should be run on NUMA node (cell) 1. Node
0 only has 2.2GB free which is probably not sufficient for certain guests.

Lock a guest to a NUMA node or physical CPU set
Once you have determined which node to run the guest on, refer to the capabilities data (the output of
the virsh capabilities command) about NUMA topology.

1. Extract from the virsh capabilities output.

<topology>
 <cells num='2'>
 <cell id='0'>
 <cpus num='4'>
 <cpu id='0'/>
 <cpu id='1'/>
 <cpu id='2'/>
 <cpu id='3'/>
 </cpus>
 </cell>
 <cell id='1'>
 <cpus num='4'>
 <cpu id='4'/>
 <cpu id='5'/>
 <cpu id='6'/>
 <cpu id='7'/>
 </cpus>
 </cell>
 </cells>
</topology>

2. Observe that the node 1, <cell id='1'>, has physical CPUs 4 to 7.

3. The guest can be locked to a set of CPUs by appending the cpuset attribute to the configuration
file.

Chapter 32. Tips and tricks

378

a. While the guest is offline, open the configuration file with virsh edit.

b. Locate where the guest's virtual CPU count is specified. Find the vcpus element.

<vcpus>4</vcpus>

The guest in this example has four CPUs.

c. Add a cpuset attribute with the CPU numbers for the relevant NUMA cell.

<vcpus cpuset='4-7'>4</vcpus>

4. Save the configuration file and restart the guest.

The guest has been locked to CPUs 4 to 7.

Automatically locking guests to CPUs with virt-install
The virt-install provisioning tool provides a simple way to automatically apply a 'best fit' NUMA
policy when guests are created.

The cpuset option for virt-install can use a CPU set of processors or the parameter auto. The
auto parameter automatically determines the optimal CPU locking using the available NUMA data.

For a NUMA system, use the --cpuset=auto with the virt-install command when creating
new guests.

Tuning CPU affinity on running guests
There may be times where modifying CPU affinities on running guests is preferable to rebooting the
guest. The virsh vcpuinfo and virsh vcpupin commands can perform CPU affinity changes on
running guests.

The virsh vcpuinfo command gives up to date information about where each virtual CPU is
running.

In this example, guest1 is a guest with four virtual CPUs is running on a KVM host.

virsh vcpuinfo guest1
VCPU: 0
CPU: 3
State: running
CPU time: 0.5s
CPU Affinity: yyyyyyyy
VCPU: 1
CPU: 1
State: running
CPU Affinity: yyyyyyyy
VCPU: 2
CPU: 1
State: running
CPU Affinity: yyyyyyyy
VCPU: 3
CPU: 2
State: running
CPU Affinity: yyyyyyyy

Generating a new unique MAC address

379

The virsh vcpuinfo output (the yyyyyyyy value of CPU Affinity) shows that the guest can
presently run on any CPU.

To lock the virtual CPUs to the second NUMA node (CPUs four to seven), run the following
commands.

virsh vcpupin guest1 0 4
virsh vcpupin guest1 1 5
virsh vcpupin guest1 2 6
virsh vcpupin guest1 3 7

The virsh vcpuinfo command confirms the change in affinity.

virsh vcpuinfo guest1
VCPU: 0
CPU: 4
State: running
CPU time: 32.2s
CPU Affinity: ----y---
VCPU: 1
CPU: 5
State: running
CPU time: 16.9s
CPU Affinity: -----y--
VCPU: 2
CPU: 6
State: running
CPU time: 11.9s
CPU Affinity: ------y-
VCPU: 3
CPU: 7
State: running
CPU time: 14.6s
CPU Affinity: -------y

32.9. Generating a new unique MAC address
In some case you will need to generate a new and unique MAC address for a guest. There is no
command line tool available to generate a new MAC address at the time of writing. The script
provided below can generate a new MAC address for your guests. Save the script to your guest as
macgen.py. Now from that directory you can run the script using ./macgen.py and it will generate a
new MAC address. A sample output would look like the following:

$./macgen.py
00:16:3e:20:b0:11

#!/usr/bin/python
macgen.py script to generate a MAC address for virtualized guests on Xen
#
import random
#
def randomMAC():
 mac = [0x00, 0x16, 0x3e,
 random.randint(0x00, 0x7f),
 random.randint(0x00, 0xff),
 random.randint(0x00, 0xff)]
 return ':'.join(map(lambda x: "%02x" % x, mac))
#
print randomMAC()

Chapter 32. Tips and tricks

380

Another method to generate a new MAC for your guest
You can also use the built-in modules of python-virtinst to generate a new MAC address and
UUID for use in a guest configuration file:

echo 'import virtinst.util ; print\
 virtinst.util.uuidToString(virtinst.util.randomUUID())' | python
echo 'import virtinst.util ; print virtinst.util.randomMAC()' | python

The script above can also be implemented as a script file as seen below.

#!/usr/bin/env python
-*- mode: python; -*-
print ""
print "New UUID:"
import virtinst.util ; print virtinst.util.uuidToString(virtinst.util.randomUUID())
print "New MAC:"
import virtinst.util ; print virtinst.util.randomMAC()
print ""

32.10. Limit network bandwidth for a Xen guest
In some environments it may be required to limit the network bandwidth available to certain guests.
This can be used to implement basic Quality of Service on a host running multiple virtual machines. By
default, the guest can use any bandwidth setting available which your physical network card supports.
The physical network card must be mapped to one of virtual machine's virtual network interfaces. In
Xen the “rate” parameter part of the VIF entries can throttle virtualized guests.

This list covers the variables

 rate
The rate= option can be added to the VIF= entry in a virtual machine configuration file to limit a
virtual machine's network bandwidth or specify a specific time interval for a time window.

time window
The time window is optional to the rate= option:

The default time window is 50ms.

A smaller time window will provide less burst transmission, however, the replenishment rate and
latency will increase.

The default 50ms time window is a good balance between latency and throughput and in most
cases will not require changing.

Examples of rate parameter values and uses.

 rate=10Mb/s
Limit the outgoing network traffic from the guest to 10MB/s.

 rate=250KB/s
Limit the outgoing network traffic from the guest to 250KB/s.

 rate=10MB/s@50ms
Limit bandwidth to 10MB/s and provide the guest with a 50KB chunk every 50ms.

In the virtual machine configuration a sample VIF entry would look like the following:

Configuring Xen processor affinities

381

vif = ['rate=10MB/s , mac=00:16:3e:7a:55:1c, bridge=xenbr1']

This rate entry would limit the virtual machine's interface to 10MB/s for outgoing traffic

32.11. Configuring Xen processor affinities
Xen can allocate virtual CPUs to associate with one or more host CPUs. This allocates real processing
resources to virtualized guests. This approach allows Red Hat Enterprise Linux optimize processor
resources when employing dual-core, hyper-threading, or other CPU concurrency technologies. The
Xen credit scheduler automatically balances virtual CPUs between physical ones, to maximize system
use. Red Hat Enterprise Linux allows the credit scheduler to move CPUs around as necessary, as
long as the virtual CPU is pinned to a physical CPU.

If you are running I/O intensive tasks, it is recommended to dedicate either a hyperthread or an entire
processor core to run domain0.

Note that this is unnecessary for KVM as KVM uses the default Linux kernel scheduler.

CPU affinities can be set with virsh or virt-manager:

To set CPU affinities using virsh refer to Configuring virtual CPU affinity for more information.

To configure and view CPU information with virt-manager refer to Section 26.11, “Displaying virtual
CPUs ” for more information.

32.12. Modifying the Xen hypervisor
Managing host systems often involves changing the boot configuration file /boot/grub/grub.conf.
Managing several or more hosts configuration files quickly becomes difficult. System administrators
often prefer to use the 'cut and paste' method for editing multiple grub.conf files. If you do this,
ensure you include all five lines in the Virtualization entry (or this will create system errors). Hypervisor
specific values are all found on the 'xen' line. This example represents a correct grub.conf
virtualization entry:

boot=/dev/sda/
default=0
timeout=15
#splashimage=(hd0, 0)/grub/splash.xpm.gz

hiddenmenu
serial --unit=0 --speed=115200 --word=8 --parity=no --stop=1
terminal --timeout=10 serial console
title Red Hat Enterprise Linux Server (2.6.17-1.2519.4.21. el5xen)
root (hd0, 0)
kernel /xen.gz-2.6.17-1.2519.4.21.el5 com1=115200,8n1
 module /vmlinuz-2.6.17-1.2519.4.21el5xen ro root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.17-1.2519.4.21.el5xen.img

For example, to change the memory entry on your hypervisor (dom0) to 256MB at boot time, edit the
'xen' line and append it with this entry: 'dom0_mem=256M'. This example is the grub.conf with the
hypervisor's memory entry modified.

boot=/dev/sda
default=0
timeout=15
#splashimage=(hd0,0)/grubs/splash.xpm.gz
hiddenmenu
serial --unit=0 --speed =115200 --word=8 --parity=no --stop=1

Chapter 32. Tips and tricks

382

terminal --timeout=10 serial console
title Red Hat Enterprise Linux Server (2.6.17-1.2519.4.21. el5xen)
root (hd0,0)
kernel /xen.gz-2.6.17-1.2519.4.21.el5 com1=115200,8n1 dom0_mem=256MB
 module /vmlinuz-2.6.17-1.2519.4.21.el5xen ro root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.17-1.2519.4.21.el5xen.img

32.13. Very Secure ftpd
vsftpd can provide access to installation trees for para-virtualized guests (for example, the Red
Hat Enterprise Linux 5 repositories) or other data. If you have not installed vsftpd during the server
installation you can grab the RPM package from your Server directory of your installation media and
install it using the rpm -ivh vsftpd*.rpm (note that the RPM package must be in your current
directory).

1. To configure vsftpd, edit /etc/passwd using vipw and change the ftp user's home directory to
the directory where you are going to keep the installation trees for your para-virtualized guests. An
example entry for the FTP user would look like the following:

ftp:x:14:50:FTP User:/xen/pub:/sbin/nologin

2. Verify that vsftpd is not enabled using the chkconfig --list vsftpd:

$ chkconfig --list vsftpd
vsftpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off

3. Run the chkconfig --levels 345 vsftpd on to start vsftpd automatically for run levels 3, 4
and 5.

4. Use the chkconfig --list vsftpd command to verify the vsftpd daemon is enabled to
start during system boot:

$ chkconfig --list vsftpd
vsftpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

5. use the service vsftpd start vsftpd to start the vsftpd service:

$service vsftpd start vsftpd
Starting vsftpd for vsftpd: [OK]

32.14. Configuring LUN Persistence
This section covers how to implement LUN persistence in guests and on the host machine with and
without multipath.

Implementing LUN persistence without multipath
If your system is not using multipath, you can use udev to implement LUN persistence. Before
implementing LUN persistence in your system, ensure that you acquire the proper UUIDs. Once you
acquire these, you can configure LUN persistence by editing the scsi_id file that resides in the /etc
directory. Once you have this file open in a text editor, you must comment out this line:

options=-b

Configuring LUN Persistence

383

Then replace it with this parameter:

options=-g

This tells udev to monitor all system SCSI devices for returning UUIDs. To determine the system
UUIDs, use the scsi_id command:

scsi_id -g -s /block/sdc
3600a0b80001327510000015427b625e

The long string of characters in the output is the UUID. The UUID does not change when you add a
new device to your system. Acquire the UUID for each device in order to create rules for the devices.
To create new device rules, edit the 20-names.rules file in the /etc/udev/rules.d directory.
The device naming rules follow this format:

KERNEL="sd*", BUS="scsi", PROGRAM="sbin/scsi_id", RESULT="UUID", NAME="devicename"

Replace your existing UUID and devicename with the above UUID retrieved entry. The rule should
resemble the following:

KERNEL="sd*", BUS="scsi", PROGRAM="sbin/scsi_id",
 RESULT="3600a0b80001327510000015427b625e", NAME="mydevicename"

This enables all devices that match the /dev/sd* pattern to inspect the given UUID. When it finds a
matching device, it creates a device node called /dev/devicename. For this example, the device
node is /dev/mydevice . Finally, append the /etc/rc.local file with this line:

/sbin/start_udev

Implementing LUN persistence with multipath
To implement LUN persistence in a multipath environment, you must define the alias names
for the multipath devices. For this example, you must define four device aliases by editing the
multipath.conf file that resides in the /etc/ directory:

multipath {
 wwid 3600a0b80001327510000015427b625e
 alias oramp1
}
multipath {
 wwid 3600a0b80001327510000015427b6
 alias oramp2
}
multipath {
 wwid 3600a0b80001327510000015427b625e
 alias oramp3
}
multipath {
 wwid 3600a0b80001327510000015427b625e
 alias oramp4
}

This defines 4 LUNs: /dev/mpath/oramp1, /dev/mpath/oramp2, /dev/mpath/oramp3, and
dev/mpath/oramp4. The devices will reside in the /dev/mpath directory. These LUN names are
persistent after reboots as it creates aliased names on the wwid for each of the LUNs.

Chapter 32. Tips and tricks

384

32.15. Disable SMART disk monitoring for guests
SMART disk monitoring can be disabled as we are running on virtual disks and the physical storage is
managed by the host.

/sbin/service smartd stop
/sbin/chkconfig --del smartd

32.16. Cleaning up old Xen configuration files
Over time you will see a number of files accumulate in /var/lib/xen, the usually named
vmlinuz.****** and initrd.******. These files are the initrd and vmlinuz files from virtual
machines which either failed to boot or failed for some other reason. These files are temporary
files extracted from virtual machine's boot disk during the start up sequence. These files should be
automatically removed after the virtual machine is shut down cleanly. Then you can safely delete old
and stale copies from this directory.

32.17. Configuring a VNC Server
To configure a VNC server use the Remote Desktop application in System > Preferences.
Alternatively, you can run the vino-preferences command.

The following steps set up a dedicated VNC server session:

1. Edit the ~/.vnc/xstartup file to start a GNOME session whenever vncserver is started. The
first time you run the vncserver script it will ask you for a password you want to use for your VNC
session.

2. A sample xstartup file:

#!/bin/sh
Uncomment the following two lines for normal desktop:
unset SESSION_MANAGER
exec /etc/X11/xinit/xinitrc
[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
#xsetroot -solid grey
#vncconfig -iconic &
#xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
#twm &
if test -z "$DBUS_SESSION_BUS_ADDRESS" ; then
 eval `dbus-launch --sh-syntax –exit-with-session`
 echo "D-BUS per-session daemon address is: \
 $DBUS_SESSION_BUS_ADDRESS"
fi
exec gnome-session

32.18. Cloning guest configuration files
You can copy an existing configuration file to create an all new guest. You must modify the name
parameter of the guests' configuration file. The new, unique name then appears in the hypervisor and
is viewable by the management utilities. You must generate an all new UUID as well by using the
uuidgen command. Then for the vif entries you must define a unique MAC address for each guest
(if you are copying a guest configuration from an existing guest, you can create a script to handle it).
For the xen bridge information, if you move an existing guest configuration file to a new host, you must
update the xenbr entry to match your local networking configuration. For the Device entries, you must
modify the entries in the 'disk=' section to point to the correct guest image.

Duplicating an existing guest and its configuration file

385

You must also modify these system configuration settings on your guest. You must modify the
HOSTNAME entry of the /etc/sysconfig/network file to match the new guest's hostname.

You must modify the HWADDR address of the /etc/sysconfig/network-scripts/ifcfg-eth0
file to match the output from ifconfig eth0 file and if you use static IP addresses, you must modify
the IPADDR entry.

32.19. Duplicating an existing guest and its configuration
file
This section outlines copying an existing configuration file to create a new guest. There are key
parameters in your guest's configuration file you must be aware of, and modify, to successfully
duplicate a guest.

 name
The name of your guest as it is known to the hypervisor and displayed in the management utilities.
This entry should be unique on your system.

 uuid
A unique handle for the guest, a new UUID can be regenerated using the uuidgen command. A
sample UUID output:

$ uuidgen
a984a14f-4191-4d14-868e-329906b211e5

 vif
• The MAC address must define a unique MAC address for each guest. This is automatically

done if the standard tools are used. If you are copying a guest configuration from an existing
guest you can use the script Section 32.9, “Generating a new unique MAC address”.

• If you are moving or duplicating an existing guest configuration file to a new host you have to
make sure you adjust the xenbr entry to correspond with your local networking configuration
(you can obtain the bridge information using the command brctl show command).

• Device entries, make sure you adjust the entries in the disk= section to point to the correct
guest image.

Now, adjust the system configuration settings on your guest:

 /etc/sysconfig/network
Modify the HOSTNAME entry to the guest's new hostname.

 /etc/sysconfig/network-scripts/ifcfg-eth0
• Modify the HWADDR address to the output from ifconfig eth0

• Modify the IPADDR entry if a static IP address is used.

386

Chapter 33.

387

Creating custom libvirt scripts
This section provides some information which may be useful to programmers and system
administrators intending to write custom scripts to make their lives easier by using libvirt.

Chapter 32, Tips and tricks is recommended reading for programmers thinking of writing new
applications which use libvirt.

33.1. Using XML configuration files with virsh
virsh can handle XML configuration files. You may want to use this to your advantage for scripting
large deployments with special options. You can add devices defined in an XML file to a running para-
virtualized guest. For example, to add a ISO file as hdc to a running guest create an XML file:

cat satelliteiso.xml
<disk type="file" device="disk">
 <driver name="file"/>
 <source file="/var/lib/libvirt/images/rhn-satellite-5.0.1-11-redhat-linux-as-i386-4-
embedded-oracle.iso"/>
 <target dev="hdc"/>
 <readonly/>
</disk>

Run virsh attach-device to attach the ISO as hdc to a guest called "satellite" :

virsh attach-device satellite satelliteiso.xml

388

Part VIII. Troubleshooting

Introduction to Troubleshooting
and Problem Solving

The following chapters provide information to assist you in troubleshooting issues you may encounter
using virtualization.

Important note on virtualization issues

Your particular problem may not appear in this book due to ongoing development which creates
and fixes bugs. For the most up to date list of known bugs, issues and bug fixes read the Red
Hat Enterprise Linux Release Notes for your version and hardware architecture. The Release
Notes can be found in the documentation section of the Red Hat website, www.redhat.com/docs/
manuals/enterprise/1.

If all else fails...

Contact Red Hat Global Support Services (https://www.redhat.com/apps/support/). Our staff can
assist you in resolving your issues.

1 http://www.redhat.com/docs/manuals/enterprise/

http://www.redhat.com/docs/manuals/enterprise/
http://www.redhat.com/docs/manuals/enterprise/
https://www.redhat.com/apps/support/
http://www.redhat.com/docs/manuals/enterprise/

Chapter 34.

391

Troubleshooting Xen
This chapter covers essential concepts to assist you in troubleshooting problems in Xen.
Troubleshooting topics covered in this chapter include:
• troubleshooting tools for Linux and virtualization.

• troubleshooting techniques for identifying problems.

• The location of log files and explanations of the information in logs.

This chapter is to give you, the reader, a background to identify where problems with virtualization
technologies are. Troubleshooting takes practice and experience which are difficult to learn from a
book. It is recommended that you experiment and test virtualization on Red Hat Enterprise Linux to
develop your troubleshooting skills.

If you cannot find the answer in this document there may be an answer online from the virtualization
community. Refer to Section A.1, “Online resources” for a list of Linux virtualization websites.

34.1. Debugging and troubleshooting Xen
This section summarizes the System Administrator applications, the networking utilities, and
debugging tools. You can employ these standard System administration tools and logs to assist with
troubleshooting:

Useful commands and applications for troubleshooting
 xentop

xentop displays real-time information about a host system and the guest domains.

 xm
Using the dmesg and log

• vmstat

• iostat

• lsof

The iostat, mpstat and sar commands are all provided by the sysstat package.

You can employ these Advanced Debugging Tools and logs to assist with troubleshooting:

• XenOprofile

• systemtap

• crash

• sysrq

• sysrq t

• sysrq w

These networking tools can assist with troubleshooting virtualization networking problems:

• ifconfig

• tcpdump

Chapter 34. Troubleshooting Xen

392

The tcpdump command 'sniffs' network packets. tcpdump is useful for finding network
abnormalities and problems with network authentication. There is a graphical version of tcpdump
named wireshark.

• brctl

brctl is a networking tool that inspects and configures the Ethernet bridge configuration in the
Virtualization linux kernel. You must have root access before performing these example commands:

brctl show

bridge-name bridge-id STP enabled interfaces

xenbr0 8000.feffffff no vif13.0
xenbr1 8000.ffffefff yes pddummy0
xenbr2 8000.ffffffef no vif0.0

brctl showmacs xenbr0

port-no mac-addr local? aging timer

1 fe:ff:ff:ff:ff: yes 0.00
2 fe:ff:ff:fe:ff: yes 0.00

brctl showstp xenbr0
xenbr0
bridge-id 8000.fefffffffff
designated-root 8000.fefffffffff
root-port 0 path-cost 0
max-age 20.00 bridge-max-age 20.00
hello-time 2.00 bridge-hello-time 2.00
forward-delay 0.00 bridge-forward-delay 0.00
aging-time 300.01
hello-timer 1.43 tcn-timer 0.00
topology-change-timer 0.00 gc-timer 0.02

Listed below are some other useful commands for troubleshooting virtualization on Red Hat Enterprise
Linux 5. All utilities mentioned can be found in the Server repositories Red Hat Enterprise Linux 5.

• strace is a command which traces system calls and events received and used by another process.

• vncviewer: connect to a VNC server running on your server or a virtual machine. Install vncviewer
using the yum install vnc command.

• vncserver: start a remote desktop on your server. Gives you the ability to run graphical user
interfaces such as virt-manager via a remote session. Install vncserver using the yum install
vnc-server command.

34.2. Log files overview
When deploying Red Hat Enterprise Linux 5 with Virtualization into your network infrastructure, the
host's Virtualization software uses many specific directories for important configuration, log files, and
other utilities. All the Xen logs files are standard ASCII files, and accessible with a text editor:

• The Xen configuration directory is /etc/xen/. This directory contains the xend daemon and other
virtual machine configuration files. The networking script files are found in the scripts directory.

• All Xen log files are stored in the /var/log/xen directory.

Log file descriptions

393

• The default directory for all file-based images is the /var/lib/libvirt/images directory.

• Xen kernel information is stored in the /proc/xen/ directory.

34.3. Log file descriptions
Xen features the xend daemon and qemu-dm process, two utilities that write the multiple log files to
the /var/log/xen/ directory:

• xend.log is the log file that contains all the data collected by the xend daemon, whether it is a
normal system event, or an operator initiated action. All virtual machine operations (such as create,
shutdown, destroy and so on) appear in this log. The xend.log is usually the first place to look
when you track down event or performance problems. It contains detailed entries and conditions of
the error messages.

• xend-debug.log is the log file that contains records of event errors from xend and the
Virtualization subsystems (such as framebuffer, Python scripts, and so on).

• xen-hotplug-log is the log file that contains data from hotplug events. If a device or a network
script does not come online, the event appears here.

• qemu-dm.[PID].log is the log file created by the qemu-dm process for each fully virtualized
guest. When using this log file, you must retrieve the given qemu-dm process PID, by using the ps
command to examine process arguments to isolate the qemu-dm process on the virtual machine.
Note that you must replace the [PID] symbol with the actual PID qemu-dm process.

If you encounter any errors with the Virtual Machine Manager, you can review the generated data in
the virt-manager.log file that resides in the /.virt-manager directory. Note that every time
you start the Virtual Machine Manager, it overwrites the existing log file contents. Make sure to backup
the virt-manager.log file, before you restart the Virtual Machine manager after a system error.

34.4. Important directory locations
There are other utilities and log files you should be aware of for tracking errors and troubleshooting
problems with Xen:

• Virtualized guest images reside in the /var/lib/libvirt/images directory.

• When you restart the xend daemon, it updates the xend-database that resides in the /var/lib/
xen/xend-db directory.

• Virtual machine dumps (that you perform with the xm dump-core command) resides in the /var/
lib/xen/dumps directory.

• The /etc/xen directory contains the configuration files that you use to manage system resources.
The xend daemon configuration file is /etc/xen/xend-config.sxp. This file can be edited to
implement system-wide changes and configure the networking. However, manually editing files in
the /etc/xen/ folder is not advised.

• The proc folders are another resource that allows you to gather system information. These proc
entries reside in the /proc/xen directory:

/proc/xen/capabilities

/proc/xen/balloon

/proc/xen/xenbus/

Chapter 34. Troubleshooting Xen

394

34.5. Troubleshooting with the logs
When encountering installation issues with Xen, refer to the host system's two logs to assist with
troubleshooting. The xend.log file contains the same basic information as when you run the xm log
command. This log is found in the /var/log/ directory. Here is an example log entry for when you
create a domain running a kernel:

[2006-12-27 02:23:02 xend] ERROR (SrvBase: 163) op=create: Error creating domain: (0,
 'Error')
Traceback (most recent call list)
File "/usr/lib/python2.4/site-packages/xen/xend/server/SrvBase.py" line 107 in_perform val =
 op_method (op,req)
File
"/usr/lib/python2.4/site-packages/xen/xend/server/SrvDomainDir.py line 71 in op_create
raise XendError ("Error creating domain: " + str(ex))
XendError: Error creating domain: (0, 'Error')

The other log file, xend-debug.log, is very useful to system administrators since it contains even
more detailed information than xend.log . Here is the same error data for the same kernel domain
creation problem:

ERROR: Will only load images built for Xen v3.0
ERROR: Actually saw: GUEST_OS=netbsd, GUEST_VER=2.0, XEN_VER=2.0; LOADER=generic, BSD_SYMTAB'
ERROR: Error constructing guest OS

When calling customer support, always include a copy of both these log files when contacting the
technical support staff.

34.6. Troubleshooting with the serial console
The serial console is helpful in troubleshooting difficult problems. If the Virtualization kernel crashes
and the hypervisor generates an error, there is no way to track the error on a local host. However, the
serial console allows you to capture it on a remote host. You must configure the host to output data to
the serial console. Then you must configure the remote host to capture the data. To do this, you must
modify these options in the grub.conf file to enable a 38400-bps serial console on com1 /dev/
ttyS0:

title Red Hat Enterprise Linux (2.6.18-8.2080_xen0)
 root (hd0,2)
 kernel /xen.gz-2.6.18-8.el5 com1=38400,8n1
 module /vmlinuz-2.618-8.el5xen ro root=LABEL=/rhgb quiet console=xvc console=tty xencons=xvc

 module /initrd-2.6.18-8.el5xen.img

The sync_console can help determine a problem that causes hangs with asynchronous hypervisor
console output, and the "pnpacpi=off" works around a problem that breaks input on the serial
console. The parameters "console=ttyS0" and "console=tty" means that kernel errors get
logged with on both the normal VGA console and on the serial console. Then you can install and set
up ttywatch to capture the data on a remote host connected by a standard null-modem cable. For
example, on the remote host you could type:

Para-virtualized guest console access

395

Itanium serial console troubleshooting

To access the hypervisor via a serial console on the Itanium® architecture you must enable the
console in ELILO. For more information on configuring ELILO, refer to Chapter 29, Configuring
ELILO.

ttywatch --name myhost --port /dev/ttyS0

This pipes the output from /dev/ttyS0 into the file /var/log/ttywatch/myhost.log .

34.7. Para-virtualized guest console access
Para-virtualized guest operating systems automatically has a virtual text console configured to transmit
data to the host operating system. Connect to a guest's virtual console with the following command:

virsh console [guest name, ID or UUID]

You can also use virt-manager to display the virtual text console. In the guest console window,
select Serial Console from the View menu.

34.8. Fully virtualized guest console access
Fully virtualized guest operating systems automatically has a text console configured for use, but the
difference is the kernel guest is not configured. To enable the guest virtual serial console to work with
the Full Virtualized guest, you must modify the guest's grub.conf file, and include the 'console
=ttyS0 console=tty0' parameter. This ensures that the kernel messages are sent to the virtual
serial console (and the normal graphical console). To use the guest's serial console, you must edit
the libvirt configuration file configuration file. On the host, access the serial console with the following
command:

virsh console

You can also use virt-manager to display the virtual text console. In the guest console window,
select Serial Console from the View menu.

34.9. Common Xen problems
When attempting to start the xend service, nothing happens. Type virsh list and receive the
following:

Error: Error connecting to xend: Connection refused. Is xend running?

Try to run xend start manually and receive more errors:

Error: Could not obtain handle on privileged command interfaces (2 = No such file or
 directory)
Traceback (most recent call last:)
File "/usr/sbin/xend/", line 33 in ?

Chapter 34. Troubleshooting Xen

396

from xen.xend.server. import SrvDaemon
File "/usr/lib/python2.4/site-packages/xen/xend/server/SrvDaemon.py" , line 26 in ?
from xen.xend import XendDomain
File "/usr//lib/python2.4/site-packages/xen/xend/XendDomain.py" , line 33, in ?

from xen.xend import XendDomainInfo
File "/usr/lib/python2.4/site-packages/xen/xend/image.py" , line37, in ?
import images
File "/usr/lib/python2.4/site-packages/xen/xend/image.py" , line30, in ?
xc = xen.lowlevel.xc.xc ()
RuntimeError: (2, 'No such file or directory')

What has most likely happened here is that you rebooted your host into a kernel that is not a kernel-
xen kernel. To correct this, you must select the kernel-xen kernel at boot time (or set the kernel-
xen kernel to the default in the grub.conf file).

34.10. Guest creation errors
When you attempt to create a guest, you receive an "Invalid argument" error message. This
usually means that the kernel image you are trying to boot is incompatible with the hypervisor. An
example of this would be if you were attempting to run a non-PAE FC5 kernel on a PAE only FC6
hypervisor.

You do a yum update and receive a new kernel, the grub.conf default kernel switches right back to
a bare-metal kernel instead of the Virtualization kernel.

To correct this problem you must modify the default kernel RPM that resides in the /etc/
sysconfig/kernel/ directory. You must ensure that kernel-xen parameter is set as the default
option in your grub.conf file.

34.11. Troubleshooting with serial consoles
Linux kernels can output information to serial ports. This is useful for debugging kernel panics and
hardware issues with video devices or headless servers. The subsections in this section cover setting
up serial console output for machines running Red Hat Enterprise Linux virtualization kernels and their
virtualized guests.

34.11.1. Serial console output for Xen
By default, the serial console for the Xen hypervisor is disabled and no data is output from serial ports.

To receive kernel information on a serial port modify the /boot/grub/grub.conf file by setting the
appropriate serial device parameters.

If your serial console is on com1, modify /boot/grub/grub.conf by inserting the lines
com1=115200,8n1, console=tty0 and console=ttyS0,115200 where shown.

title Red Hat Enterprise Linux 5 i386 Xen (2.6.18-92.el5xen)
 root (hd0, 8)
 kernel /boot/xen.gz-2.6.18-92.el5 com1=115200,8n1
 module /boot/vmlinuz-2.6.18-92.el5xen ro root=LABEL=VG_i386 console=tty0
 console=ttyS0,115200
 module /boot/initrd-2.6.18-92.el5xen.img

If your serial console is on com2, modify /boot/grub/grub.conf by inserting the lines
com2=115200,8n1 console=com2L, console=tty0 and console=ttyS0,115200 where
shown.

Xen serial console output from para-virtualized guests

397

title Red Hat Enterprise Linux 5 i386 Xen (2.6.18-92.el5xen)
 root (hd0, 8)
 kernel /boot/xen.gz-2.6.18-92.el5 com2=115200,8n1 console=com2L
 module /boot/vmlinuz-2.6.18-92.el5xen ro root=LABEL=VG_i386 console=tty0
 console=ttyS0,115200
 module /boot/initrd-2.6.18-92.el5xen.img

Save the changes and reboot the host. The hypervisor outputs serial data on the serial (com1, com2
and so on) you selected in the previous step.

Note the example using the com2 port, the parameter console=ttyS0 on the vmlinuz line us used.
The behavior of every port being used as console=ttyS0 is not standard Linux behavior and is
specific to the Xen environment.

34.11.2. Xen serial console output from para-virtualized guests
This section describes how to configure a virtualized serial console for Red Hat Enterprise Linux para-
virtualized guests.

Serial console output from para-virtualized guests can be received using the "virsh console"
or in the "Serial Console" window of virt-manager. Set up the virtual serial console using this
procedure:

1. Log in to your para-virtualized guest.

2. Edit /boot/grub/grub.conf as follows:

Red Hat Enterprise Linux 5 i386 Xen (2.6.18-92.el5xen)
 root (hd0, 0) kernel /boot/vmlinuz-2.6.18-92.el5xen ro root=LABEL=VG_i386 console=xvc0
 initrd /boot/initrd-2.6.18-92.el5xen.img

3. Reboot the para-virtualized guest.

You should now get kernel messages on the virt-manager "Serial Console" and "virsh console".

Logging the para-virtualized domain serial console output
The Xen daemon(xend) can be configured to log the output from serial consoles of para-virtualized
guests.

To configure xend edit /etc/sysconfig/xend. Change the entry:

Log all guest console output (cf xm console)
#XENCONSOLED_LOG_GUESTS=no

to:

Log all guest console output (cf xm console)
XENCONSOLED_LOG_GUESTS=yes

Reboot the host to activate logging the guest serial console output.

Logs from the guest serial consoles are stored in the /var/log/xen/console file.

34.11.3. Serial console output from fully virtualized guests
This section covers how to enable serial console output for fully virtualized guests.

Chapter 34. Troubleshooting Xen

398

Fully virtualized guest serial console output can be viewed with the "virsh console" command.

Be aware fully virtualized guest serial consoles have some limitations. Present limitations include:

• logging output with xend is unavailable.

• output data may be dropped or scrambled.

The serial port is called ttyS0 on Linux or COM1 on Windows.

You must configure the virtualized operating system to output information to the virtual serial port.

To output kernel information from a fully virtualized Linux guest into the domain modify the /boot/
grub/grub.conf file by inserting the line "console=tty0 console=ttys0,115200".

title Red Hat Enterprise Linux Server (2.6.18-92.el5)
 root (hd0,0)
 kernel /vmlinuz-2.6.18-92.el5 ro root=/dev/volgroup00/logvol00
 console=tty0 console=ttys0,115200
 initrd /initrd-2.6.18-92.el5.img

Reboot the guest.

View the serial console messages using the "virsh console" command.

Note

Serial console messages from fully virtualized domains are not logged in /var/log/xen/
console as they are for para-virtualized guests.

34.12. Xen configuration files
When you create guests with the virt-manager or virt-install tools on Red Hat Enterprise
Linux 5, the guests configuration files are created automatically in the /etc/xen directory.

Warning

Red Hat advises users not to manually edit Xen configuration files. Xen configuration files have
limited error checking and many unsupported variables. Editing Xen configuration files may
damage your guests, make guests unbootable or cause data loss.

The example below is a typical a para-virtualized guest configuration file:

name = "rhel5vm01"
memory = "2048"
disk = ['tap:aio:/var/lib/libvirt/images/rhel5vm01.dsk,xvda,w',]
vif = ["type=ieomu, mac=00:16:3e:09:f0:12 bridge=xenbr0',
"type=ieomu, mac=00:16:3e:09:f0:13]
vnc = 1
vncunused = 1

Interpreting Xen error messages

399

uuid = "302bd9ce-4f60-fc67-9e40-7a77d9b4e1ed"
bootloader = "/usr/bin/pygrub"
vcpus=2
on_reboot = "restart"
on_crash = "restart"

Note that the serial="pty" is the default for the configuration file. This configuration file example
is for a fully-virtualized guest:

name = "rhel5u5-86_64"
builder = "hvm"
memory = 500
disk = ['/var/lib/libvirt/images/rhel5u5-x86_64.dsk.hda,w']
vif = ['type=ioemu, mac=00:16:3e:09:f0:12, bridge=xenbr0', 'type=ieomu,
 mac=00:16:3e:09:f0:13, bridge=xenbr1']
uuid = "b10372f9-91d7-ao5f-12ff-372100c99af5'
device_model = "/usr/lib64/xen/bin/qemu-dm"
kernel = "/usr/lib/xen/boot/hvmloader/"
vnc = 1
vncunused = 1
apic = 1
acpi = 1
pae = 1
vcpus =1
serial ="pty" # enable serial console
on_boot = 'restart'

Xen configuration files

Editing Xen configuration files is unsupported. Use virsh dumpxml and virsh create (or
virsh edit) to edit the libvirt configuration files (xml based) which have error checking and
safety checks.

34.13. Interpreting Xen error messages
You receive the following error:

failed domain creation due to memory shortage, unable to balloon domain0

A domain can fail if there is not enough RAM available. Domain0 does not balloon down enough to
provide space for the newly created guest. You can check the xend.log file for this error:

[2006-12-21] 20:33:31 xend 3198] DEBUG (balloon:133) Balloon: 558432 Kib free; 0 to scrub;
 need 1048576; retries: 20
[2006-12-21] 20:33:31 xend. XendDomainInfo 3198] ERROR (XendDomainInfo: 202
Domain construction failed

You can check the amount of memory in use by domain0 by using the xm list domain0 command.
If dom0 is not ballooned down, you can use the command virsh setmem dom0 NewMemSize to
check memory.

You receive the following error:

wrong kernel image: non-PAE kernel on a PAE

Chapter 34. Troubleshooting Xen

400

This message indicates that you are trying to run an unsupported guest kernel image on your
hypervisor. This happens when you try to boot a non-PAE, para-virtualized guest kernel on a Red Hat
Enterprise Linux 5 host. The Red Hat kernel-xen package only supports guest kernels with PAE and
64 bit architectures.

Type this command:

xm create -c va-base

Using config file "va-base"
Error: (22, 'invalid argument')
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] ERRORs
(XendDomainInfo:202) Domain construction failed

Traceback (most recent call last)
File "/usr/lib/python2.4/site-packages/xen/xend/XendDomainInfo.py", line 195 in create
 vm.initDomain()
File " /usr/lib/python2.4/site-packages/xen/xend/XendDomainInfo.py", line 1363 in initDomain
 raise VmError(str(exn))
VmError: (22, 'Invalid argument')
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] DEBUG (XenDomainInfo: 1449]
XendDlomainInfo.destroy: domain=1
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] DEBUG (XenDomainInfo: 1457]
XendDlomainInfo.destroy:Domain(1)

If you need to run a 32 bit non-PAE kernel you will need to run your guest as a fully virtualized virtual
machine. For para-virtualized guests, if you need to run a 32 bit PAE guest, then you must have a 32
bit PAE hypervisor. For para-virtualized guests, to run a 64 bit PAE guest, then you must have a 64 bit
PAE hypervisor. For full virtualization guests you must run a 64 bit guest with a 64 bit hypervisor. The
32 bit PAE hypervisor that comes with Red Hat Enterprise Linux 5 i686 only supports running 32 bit
PAE para virtualized and 32 bit fully virtualized guest OSes. The 64 bit hypervisor only supports 64 bit
para-virtualized guests.

This happens when you move the full virtualized HVM guest onto a Red Hat Enterprise Linux 5
system. Your guest may fail to boot and you will see an error in the console screen. Check the PAE
entry in your configuration file and ensure that pae=1.You should use a 32 bit distribution.

You receive the following error:

Unable to open a connection to the Xen hypervisor or daemon

This happens when the virt-manager application fails to launch. This error occurs when there is no
localhost entry in the /etc/hosts configuration file. Check the file and verify if the localhost entry is
enabled. Here is an example of an incorrect localhost entry:

Do not remove the following line, or various programs
that require network functionality will fail.
localhost.localdomain localhost

Here is an example of a correct localhost entry:

Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
localhost.localdomain. localhost

You receive the following error (in the xen-xend.logfile):

Interpreting Xen error messages

401

Bridge xenbr1 does not exist!

This happens when the guest's bridge is incorrectly configured and this forces the Xen hotplug scripts
to timeout. If you move configuration files between hosts, you must ensure that you update the guest
configuration files to reflect network topology and configuration modifications. When you attempt
to start a guest that has an incorrect or non-existent Xen bridge configuration, you will receive the
following errors:

xm create mySQL01

Using config file " mySQL01"
Going to boot Red Hat Enterprise Linux Server (2.6.18.-1.2747 .el5xen)
kernel: /vmlinuz-2.6.18-12747.el5xen
initrd: /initrd-2.6.18-1.2747.el5xen.img
Error: Device 0 (vif) could not be connected. Hotplug scripts not working.

In addition, the xend.log displays the following errors:

[2006-11-14 15:07:08 xend 3875] DEBUG (DevController:143) Waiting for devices vif
[2006-11-14 15:07:08 xend 3875] DEBUG (DevController:149) Waiting for 0
[2006-11-14 15:07:08 xend 3875] DEBUG (DevController:464) hotplugStatusCallback

/local/domain/0/backend/vif/2/0/hotplug-status

[2006-11-14 15:08:09 xend.XendDomainInfo 3875] DEBUG (XendDomainInfo:1449)
 XendDomainInfo.destroy: domid=2
[2006-11-14 15:08:09 xend.XendDomainInfo 3875] DEBUG (XendDomainInfo:1457)
 XendDomainInfo.destroyDomain(2)
[2006-11-14 15:07:08 xend 3875] DEBUG (DevController:464) hotplugStatusCallback

/local/domain/0/backend/vif/2/0/hotplug-status

To resolve this problem, open the guest's configuration file found in the /etc/xen directory. For
example, editing the guest mySQL01

vim /etc/xen/mySQL01

Locate the vif entry. Assuming you are using xenbr0 as the default bridge, the proper entry should
resemble the following:

vif = ['mac=00:16:3e:49:1d:11, bridge=xenbr0',]

You receive these python deprecation errors:

xm shutdown win2k3xen12
xm create win2k3xen12

Using config file "win2k3xen12".

/usr/lib64/python2.4/site-packages/xenxm/opts.py:520: Deprecation Warning:
Non ASCII character '\xc0' in file win2k3xen12 on line 1, but no encoding
declared; see http://www.python.org/peps/pep-0263.html for details

execfile (defconfig, globs, locs,)
Error: invalid syntax 9win2k3xen12, line1)

Python generates these messages when an invalid (or incorrect) configuration file. To resolve this
problem, you must modify the incorrect configuration file, or you can generate a new one.

Chapter 34. Troubleshooting Xen

402

34.14. The layout of the log directories
The basic directory structure in a Red Hat Enterprise Linux 5 Virtualization environment is as follows:

 /etc/xen/ directory contains
• configuration files used by the xend daemon.

• the scripts directory which contains the scripts for Virtualization networking.

 /var/log/xen/
• directory holding all Xen related log files.

 /var/lib/libvirt/images/
• The default directory for virtual machine image files.

• If you are using a different directory for your virtual machine images make sure you add the
directory to your SELinux policy and relabel it before starting the installation.

 /proc/xen/
• The xen related information in the /proc file system.

Chapter 35.

403

Troubleshooting
This chapter covers common problems and solutions with Red Hat Enterprise Linux virtualization.

35.1. Identifying available storage and partitions
Verify the block driver is loaded and the devices and partitions are available to the guest. This can be
done by executing "cat /proc/partitions" as seen below.

cat /proc/partitions
major minor #blocks name
 202 16 104857600 xvdb
 3 0 8175688 hda

35.2. After rebooting Xen-based guests the console freezes
Occasionally, a Xen guest's console freezes when the guest boots. The console still displays
messages but the user cannot log in.

To fix this issue add the following line to the /etc/inittab file:

1:12345:respawn:/sbin/mingetty xvc0

After saving the file, reboot. The console session should now be interactive as expected.

35.3. Virtualized Ethernet devices are not found by
networking tools
The networking tools cannot identify the Xen Virtual Ethernet networking card inside the guest
operation system. Verify this by executing the following (for Red Hat Enterprise Linux 4 and Red Hat
Enterprise Linux 5):

cat /etc/modprobe.conf

Or (for Red Hat Enterprise Linux 3):

cat /etc/modules.conf

The output should contain the line and a similar line for each additional interface.

alias eth0 xen-vnif

To fix this problem you will need to add the aliasing lines (for example, alias eth0 xen-vnif) for
every para-virtualized interface for the guest.

35.4. Loop device errors
If file-based guest images are used you may have to increase the number of configured loop devices.
The default configuration allows up to eight active loop devices. If more than eight file-based guests
or loop devices are needed the number of loop devices configured can be adjusted in /etc/
modprobe.conf. Edit /etc/modprobe.conf and add the following line to it:

Chapter 35. Troubleshooting

404

 options loop max_loop=64

This example uses 64 but you can specify another number to set the maximum loop value. You may
also have to implement loop device backed guests on your system. To employ loop device backed
guests for a para-virtualized guest, use the phy: block device or tap:aio commands. To employ
loop device backed guests for a full virtualized system, use the phy: device or file: file
commands.

35.5. Failed domain creation caused by a memory shortage
This may cause a domain to fail to start. The reason for this is there is not enough memory available
or dom0 has not ballooned down enough to provide space for a recently created or started guest. In
your /var/log/xen/xend.log, an example error message indicating this has occurred:

[2006-11-21 20:33:31 xend 3198] DEBUG (balloon:133) Balloon: 558432 KiB free;
 0 to scrub; need 1048576; retries: 20.
[2006-11-21 20:33:52 xend.XendDomainInfo 3198] ERROR (XendDomainInfo:202) Domain construction
 failed

You can verify the amount of memory currently used by dom0 with the command “xm list
Domain-0”. If dom0 is not ballooned down you can use the command “xm mem-set Domain-0
NewMemSize” where NewMemSize should be a smaller value.

35.6. Wrong kernel image error
Para-virtualized guests cannot use the kernel-xen kernel. Use only the standard kernel for para-
virtualized guests.

Attempting to boot any kernel other than the Xen kernel as a para-virtualized guest results in the
following error message:

xm create testVM
Using config file "./testVM".
Going to boot Red Hat Enterprise Linux Server (2.6.18-1.2839.el5)
kernel: /vmlinuz-2.6.18-1.2839.el5
initrd: /initrd-2.6.18-1.2839.el5.img
Error: (22, 'Invalid argument')

In the above error you can see that the kernel line shows that the system is trying to boot a non kernel-
xen kernel. The correct entry in the example is ”kernel: /vmlinuz-2.6.18-1.2839.el5xen”.

The solution is to verify you have indeed installed a kernel-xen in your guest and it is the default kernel
to boot in your /etc/grub.conf configuration file.

If you have kernel-xen installed in your guest you can start your guest:

xm create -c GuestName

Where GuestName is the name of the guest. The previous command will present you with the GRUB
boot loader screen and allow you to select the kernel to boot. You will have to choose the kernel-
xen kernel to boot. Once the guest has completed the boot process you can log into the guest and
edit /etc/grub.conf to change the default boot kernel to your kernel-xen. Simply change the line
“default=X” (where X is a number starting at '0') to correspond to the entry with your kernel-xen line.
The numbering starts at '0' so if your kernel-xen entry is the second entry you would enter '1' as the
default,for example “default=1”.

Wrong kernel image error - non-PAE kernel on a PAE platform

405

35.7. Wrong kernel image error - non-PAE kernel on a PAE
platform
If you to boot a non-PAE kernel, para-virtualized guest the error message below will display. It
indicates you are trying to run a guest kernel on your Hypervisor which at this time is not supported.
The Xen hypervisor presently only supports PAE and 64 bit para-virtualized guest kernels.

xm create -c va-base
Using config file "va-base".
Error: (22, 'Invalid argument')
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] ERROR (XendDomainInfo:202) Domain construction
 failed
Traceback (most recent call last):
File "/usr/lib/python2.4/site-packages/xen/xend/XendDomainInfo.py",
 line 195, in create vm.initDomain()
File "/usr/lib/python2.4/site-packages/xen/xend/XendDomainInfo.py",
 line 1363, in initDomain raise VmError(str(exn))
VmError: (22, 'Invalid argument')
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] DEBUG (XendDomainInfo:1449)
 XendDomainInfo.destroy: domid=1
[2006-12-14 14:55:46 xend.XendDomainInfo 3874] DEBUG (XendDomainInfo:1457)
 XendDomainInfo.destroyDomain(1)

If you need to run a 32 bit or non-PAE kernel you will need to run your guest as a fully-virtualized
virtual machine. The rules for hypervisor compatibility are:
• para-virtualized guests must match the architecture type of your hypervisor. To run a 32 bit PAE

guest you must have a 32 bit PAE hypervisor.

• to run a 64 bit para-virtualized guest your Hypervisor must be a 64 bit version too.

• fully virtualized guests your hypervisor must be 32 bit or 64 bit for 32 bit guests. You can run a 32 bit
(PAE and non-PAE) guest on a 32 bit or 64 bit hypervisor.

• to run a 64 bit fully virtualized guest your hypervisor must be 64 bit too.

35.8. Fully-virtualized 64 bit guest fails to boot
If you have moved the configuration file to a Red Hat Enterprise Linux 5 causing your fully-virtualized
guest to fail to boot and present the error, Your CPU does not support long mode. Use a
32 bit distribution. This problem is caused by a missing or incorrect pae setting. Ensure you
have an entry “pae=1” in your guest's configuration file.

35.9. A missing localhost entry causes virt-manager to fail
The virt-manager application may fail to launch and display an error such as “Unable to
open a connection to the Xen hypervisor/daemon”. This is usually caused by a missing
localhost entry in the /etc/hosts file. Verify that you indeed have a localhost entry and if it is
missing from /etc/hosts and insert a new entry for localhost if it is not present. An incorrect /
etc/hosts may resemble the following:

Do not remove the following line, or various programs
that require network functionality will fail.
localhost.localdomain localhost

The correct entry should look similar to the following:

Do not remove the following line, or various programs

Chapter 35. Troubleshooting

406

that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
localhost.localdomain localhost

35.10. Microcode error during guest boot
During the boot phase of your virtual machine you may see an error message similar to:

Applying Intel CPU microcode update: FATAL: Module microcode not found.
ERROR: Module microcode does not exist in /proc/modules

As the virtual machine is running on virtual CPUs there is no point updating the microcode. Disabling
the microcode update for your virtual machines will stop this error:

/sbin/service microcode_ctl stop
/sbin/chkconfig --del microcode_ctl

35.11. Python depreciation warning messages when
starting a virtual machine
Sometimes Python will generate a message like the one below, these are often caused by either an
invalid or incorrect configuration file. A configuration file containing non-ascii characters will cause
these errors.The solution is to correct the configuration file or generate a new one.

Another cause is an incorrect configuration file in your current working directory. “xm create” will look
in the current directory for a configuration file and then in /etc/xen

xm shutdown win2k3xen12
xm create win2k3xen12
Using config file "win2k3xen12".
/usr/lib64/python2.4/site-packages/xen/xm/opts.py:520: DeprecationWarning:
Non-ASCII character '\xc0' in file win2k3xen12 on line 1, but no encoding
declared; see http://www.python.org/peps/pep-0263.html for details
execfile(defconfig, globs, locs)
Error: invalid syntax (win2k3xen12, line 1)

35.12. Enabling Intel VT and AMD-V virtualization hardware
extensions in BIOS
This section describes how to identify hardware virtualization extensions and enable them in your
BIOS if they are disabled.

The Intel VT extensions can be disabled in the BIOS. Certain laptop vendors have disabled the Intel
VT extensions by default in their CPUs.

The virtualization extensions can not be disabled in the BIOS for AMD-V.

The virtualization extensions are sometimes disabled in BIOS, usually by laptop manufacturers.
Refer to Section 35.12, “Enabling Intel VT and AMD-V virtualization hardware extensions in BIOS” for
instructions on enabling disabled virtualization extensions.

Verify the virtualization extensions are enabled in BIOS. The BIOS settings for Intel® VT or AMD-
V are usually in the Chipset or Processor menus. The menu names may vary from this guide, the

KVM networking performance

407

virtualization extension settings may be found in Security Settings or other non standard menu
names.

Procedure 35.1. Enabling virtualization extensions in BIOS
1. Reboot the computer and open the system's BIOS menu. This can usually be done by pressing

the delete key, the F1 key or Alt and F4 keys depending on the system.

2. Select Restore Defaults or Restore Optimized Defaults, and then select Save & Exit.

3. Power off the machine and disconnect the power supply.

4. Enabling the virtualization extensions in BIOS

Note: BIOS steps

Many of the steps below may vary depending on your motherboard, processor type, chipset
and OEM. Refer to your system's accompanying documentation for the correct information
on configuring your system.

a. Power on the machine and open the BIOS (as per Step 1).

b. Open the Processor submenu The processor settings menu may be hidden in the Chipset,
Advanced CPU Configuration or Northbridge.

c. Enable Intel Virtualization Technology (also known as Intel VT) or AMD-V depending
on the brand of the processor. The virtualization extensions may be labeled Virtualization
Extensions, Vanderpool or various other names depending on the OEM and system BIOS.

d. Enable Intel VTd or AMD IOMMU, if the options are available. Intel VTd and AMD IOMMU
are used for PCI passthrough.

e. Select Save & Exit.

5. Power off the machine and disconnect the power supply.

6. Run cat /proc/cpuinfo | grep vmx svm. If the command outputs, the virtualization
extensions are now enabled. If there is no output your system may not have the virtualization
extensions or the correct BIOS setting enabled.

35.13. KVM networking performance
By default, KVM virtual machines are assigned a virtual Realtek 8139 (rtl8139) NIC (network interface
controller).

The rtl8139 virtualized NIC works fine in most environments. However, this device can suffer from
performance degradation problems on some networks, for example, a 10 Gigabit Ethernet network.

A workaround is to switch to a different type of virtualized NIC. For example, Intel PRO/1000 (e1000)
or virtio (the para-virtualized network driver).

To switch to the e1000 driver:

1. Shutdown the guest operating system.

Chapter 35. Troubleshooting

408

2. Edit the guest's configuration file with the virsh command (where GUEST is the guest's name):

virsh edit GUEST

The virsh edit command uses the $EDITOR shell variable to determine which editor to use.

3. Find the network interface section of the configuration. This section resembles the snippet below:

<interface type='network'>
 [output truncated]
 <model type='rtl8139' />
</interface>

4. Change the type attribute of the model element from 'rtl8139' to 'e1000'. This will change
the driver from the rtl8139 driver to the e1000 driver.

<interface type='network'>
 [output truncated]
 <model type='e1000' />
</interface>

5. Save the changes and exit the text editor

6. Restart the guest operating system.

Alternatively, you can install new virtualized guests with a different network driver. This may be
required if you are having difficulty installing guests over a network connection. This method requires
you to have at least one virtual machine already created (possibly installed from CD or DVD) to use as
a template.

1. Create an XML template from an existing virtual machine:

virsh dumpxml GUEST > /tmp/guest.xml

2. Copy and edit the XML file and update the unique fields: virtual machine name, UUID, disk image,
MAC address, and any other unique parameters. Note that you can delete the UUID and MAC
address lines and virsh will generate a UUID and MAC address.

cp /tmp/guest.xml /tmp/new-guest.xml
vi /tmp/new-guest.xml

Add the model line in the network interface section:

 <interface type='network'>
 [output truncated]
 <model type='e1000' />
</interface>

3. Create the new virtual machine:

virsh define /tmp/new-guest.xml
virsh start new-guest

1 https://bugzilla.redhat.com/show_bug.cgi?id=517181

https://bugzilla.redhat.com/show_bug.cgi?id=517181

KVM networking performance

409

The network performance should be better with the e1000 or virtio driver. (BZ#5171811)

https://bugzilla.redhat.com/show_bug.cgi?id=517181

410

Chapter 36.

411

Troubleshooting the Xen para-
virtualized drivers
This chapter deals with issues you may encounter with Xen hosts and fully virtualized Red Hat
Enterprise Linux guests using the para-virtualized drivers.

36.1. Red Hat Enterprise Linux 5 Virtualization log file and
directories

Red Hat Enterprise Linux 5 Virtualization related log file
In Red Hat Enterprise Linux 5, the log file written by the xend daemon and the qemu-dm process are
all kept in the following directories:

/var/log/xen/
directory holding all log file generated by the xend daemon and qemu-dm process.

xend.log
• This logfile is used by xend to log any events generate by either normal system events or

operator initiated events.

• virtual machine operations such as create, shutdown, destroy etc are all logged in this logfile.

• Usually this logfile will be the first place to look at in the event of a problem. In many cases you
will be able to identify the root cause by scanning the logfile and review the entries logged just
prior to the actual error message.

xend-debug.log
• Records error events from xend and its subsystems (from the framebuffer and Python scripts)

xen-hotplug.log
• Logs events from hotplug events.

• Event notifications from devices not coming online or network bridges not online are logged in
this file.

qemu-dm.PID.log
• This file is created by the qemu-dm process which is started for each fully virtualized guest.

• The PID is replaced with the PID of the process of the related qemu-dm process

• You can retrieve the PID for a given qemu-dm process using the ps command and in looking at
the process arguments you can identify the virtual machine the qemu-dm process belongs to.

If you are troubleshooting a problem with the virt-manager application you can also review the logfile
generated by it. The logfile for virt-manager will be in a directory called .virt-manager in the user's
home directory whom ran virt-manager. This directory will usually be ~/.virt-manager/virt-
manager.

Chapter 36. Troubleshooting the Xen para-virtualized drivers

412

Note

The logfile is overwritten every time you start virt-manager. If you are troubleshooting a problem
with virt-manager make sure you save the logfile before you restart virt-manager after an error
has occurred.

Red Hat Enterprise Linux 5 Virtualization related directories
There are a few other directories and files which may be of interest when troubleshooting a Red Hat
Enterprise Linux 5 Virtualization environment:

/var/lib/libvirt/images/
the standard directory for file-based guest images.

/var/lib/xen/xend-db/
directory that hold the xend database which is generated every time the daemon is restarted.

/etc/xen/
Stores a number of configuration files for the Xen hypervisor.

• /etc/xen/xend-config.sxp is the main configuration for the xend daemon. The xend-
config.sxp file enables or disables migration and other features not configured by libvirt.
Use the libvirt tools for all other features.

/var/lib/xen/dump/
Holds dumps generate by virtual machines or when using the xm dump-core command.

/proc/xen/
Stores xen-kernel information in the following files:

• /proc/xen/capabilities

• /proc/xen/privcmd

• /proc/xen/balloon

• /proc/xen/xenbus

• /proc/xen/xsd_port

• /proc/xen/xsd_kva

36.2. Para-virtualized guest fail to load on a Red Hat
Enterprise Linux 3 guest operating system
Red Hat Enterprise Linux 3 is uses processor architecture specific kernel RPMs and because of this
the para-virtualized drivers may fail to load if the para-virtualized driver RPM does not match the
installed kernel architecture.

When the para-virtualized driver modules are inserted, a long list of unresolved modules will be
displayed. A shortened excerpt of the error can be seen below.

insmod xen-platform-pci.o

A warning message is displayed while installing the para-virtualized drivers on Red Hat Enterprise Linux 3

413

Warning: kernel-module version mismatch
xen-platform-pci.o was compiled for kernel version 2.4.21-52.EL
while this kernel is version 2.4.21-50.EL
xen-platform-pci.o: unresolved symbol __ioremap_R9eac042a
xen-platform-pci.o: unresolved symbol flush_signals_R50973be2
xen-platform-pci.o: unresolved symbol pci_read_config_byte_R0e425a9e
xen-platform-pci.o: unresolved symbol __get_free_pages_R9016dd82
[...]

The solution is to use the correct RPM package for your hardware architecture for the para-virtualized
drivers.

36.3. A warning message is displayed while installing the
para-virtualized drivers on Red Hat Enterprise Linux 3
Installing the para-virtualized drivers on a Red Hat Enterprise Linux 3 kernel prior to 2.4.21-52 may
result in a warning message being displayed stating the modules have been compiled with a newer
version than the running kernel.

This message, as seen below, can be safely ignored.

Warning: kernel-module version mismatch
xen-platform-pci.o was compiled for kernel version 2.4.21-52.EL
while this kernel is version 2.4.21-50.EL
Warning: loading xen-platform-pci.o will taint the kernel: forced load
See http://www.tux.org/lkml/#export-tainted for information about tainted modules
Module xen-platform-pci loaded, with warnings

The important part of the message above is the last line which should state the module has been
loaded with warnings.

36.4. Manually loading the para-virtualized drivers
If for some reason the para-virtualized drivers failed to load automatically during the boot process you
can attempt to load them manually.

This will allow you to reconfigure network or storage entities or identify why they failed to load in the
first place. The steps below should load the para-virtualized driver modules.

First, locate the para-virtualized driver modules on your system.

cd /lib/modules/`uname -r`/
find . -name 'xen_*.ko' -print

Take note of the location and load the modules manually. Substitute {LocationofPV-drivers} with the
correct location you noted from the output of the commands above.

insmod \
/lib/modules/'uname -r'/{LocationofPV-drivers}/xen_platform_pci.ko
insmod /lib/modules/'uname -r'/{LocationofPV-drivers}/xen_balloon.ko
insmod /lib/modules/'uname -r'/{LocationofPV-drivers}/xen_vnif.ko
insmod /lib/modules/'uname -r'/{LocationofPV-drivers}/xen_vbd.ko

Chapter 36. Troubleshooting the Xen para-virtualized drivers

414

36.5. Verifying the para-virtualized drivers have
successfully loaded
One of the first tasks you will want to do is to verify that the drivers have actually been loaded into your
system.

After the para-virtualized drivers have been installed and the guest has been rebooted you can verify
that the drivers have loaded. First you should confirm the drivers have logged their loading into /var/
log/messages

grep -E "vif|vbd|xen" /var/log/messages
 xen_mem: Initialising balloon driver
 vif vif-0: 2 parsing device/vif/0/mac
 vbd vbd-768: 19 xlvbd_add at /local/domain/0/backend/vbd/21/76
 vbd vbd-768: 19 xlvbd_add at /local/domain/0/backend/vbd/21/76
 xen-vbd: registered block device major 202

You can also use the lsmod command to list the loaded para-virtualized drivers. It should output a list
containing the xen_vnif, xen_vbd, xen_platform_pci and xen_balloon modules.

lsmod|grep xen
xen_vbd 19168 1
xen_vnif 28416 0
xen_balloon 15256 1 xen_vnif
xen_platform_pci 98520 3 xen_vbd,xen_vnif,xen_balloon,[permanent]

36.6. The system has limited throughput with para-
virtualized drivers
If network throughput is still limited even after installing the para-virtualized drivers and you have
confirmed they are loaded correctly (refer to Section 36.5, “Verifying the para-virtualized drivers have
successfully loaded”). To fix this problem, remove the 'type=ioemu' part of 'vif=' line in your guest's
configuration file.

415

Glossary
This glossary is intended to define the terms used in this Installation Guide.

Bare-metal The term bare-metal refers to the underlying physical architecture of a
computer. Running an operating system on bare-metal is another way
of referring to running an unmodified version of the operating system
on the physical hardware. Examples of operating systems running on
bare metal are dom0 or a normally installed operating system.

dom0 Also known as the host or host operating system.

dom0 refers to the host instance of Red Hat Enterprise Linux running
the Xen hypervisor. Domain0 facilitates virtualized devices and
virtualization for the guest operating systems. Dom0 runs on and
manages the physical hardware and resource allocation for itself and
the guest operating systems.

Domains domU and dom0 are both domains. A domain is a term for a guest
or virtual machine on the Xen hypervisor. The term domains has
a similar meaning to virtual machines and the two are technically
interchangeable.

domU domU refers to the guest operating systems which run on the host
system (the dom0 domain).

Full virtualization Xen and KVM can use full virtualization. Full virtualization uses
hardware features of the processor to provide total abstraction
of the underlying physical system (bare metal) and create a new
virtual machine in which the guest operating systems can run. No
modifications are needed in the guest operating system. The guest
operating system and any applications on the guest are not aware
of the virtualized environment and run normally. Para-virtualization
requires a modified version of the Linux operating system.

Fully virtualized See Full virtualization.

Guest system Also known as guests, virtual machines, virtual servers or domU.

Hardware Virtual Machine See Full virtualization.

Host The host operating system, also known as dom0.

The host operating system environment runs the virtualization
software for Fully Virtualized and Para virtualized guest systems.

Hypervisor The hypervisor is the software layer that abstracts the hardware from
the operating system permitting multiple operating systems to run on
the same hardware. The hypervisor runs on a host operating system
allowing other virtualized operating systems to run on the host's
hardware.

The Kernel-based Virtual Machine (KVM) and Xen) hypervisors are
provided with Red Hat Enterprise Linux 5.

I/O Short for input/output (pronounced "eye-oh"). The term I/O describes
any program, operation or device that transfers data to or from a

Glossary

416

computer and to or from a peripheral device. Every transfer is an
output from one device and an input into another. Devices such as
keyboards and mouses are input-only devices while devices such as
printers are output-only. A writable CD-ROM is both an input and an
output device.

Itanium® The Intel Itanium® processor architecture.

Kernel SamePage Merging The Kernel SamePage Merging (KSM) module is used by the KVM
hypervisor to allow KVM guests to share identical memory pages.
The pages shared are usually common libraries or other identical,
high-use data. KSM can increase the performance of certain guests
by keeping these libraries in cache for various guests as well as
increasing guest density.

Kernel-based Virtual
Machine

KVM (Kernel-based Virtual Machine) is a Full virtualization solution for
Linux on AMD64 and Intel 64 hardware. VM is a Linux kernel module
built for the standard Red Hat Enterprise Linux kernel. KVM can run
multiple, unmodified virtualized guest Windows and Linux operating
systems. KVM is a hypervisor which uses the libvirt virtualization tools
(virt-manager and virsh).

KVM is a set of Linux kernel modules which manage devices,
memory and management APIs for the Hypervisor module itself.
Virtualized guests are run as Linux processes and threads which are
controlled by these modules.

LUN A Logical Unit Number (LUN) is a number assigned to a logical unit (a
SCSI protocol entity).

MAC Addresses The Media Access Control Address is the hardware address for a
Network Interface Controller. In the context of virtualization MAC
addresses must be generated for virtual network interfaces with each
MAC on your local domain being unique.

Migration Migration is name for the process of moving a virtualized guest from
one host to another. Migration can be conducted offline (where the
guest is suspended and then moved) or live (where a guest is moved
without suspending). Xen fully virtualized guests, Xen para-virtualized
guest and KVM fully virtualized guests can all be migrated.

Migration is a key feature of virtualization as software is completely
separated from hardware. Migration is useful for:

• Load balancing - guests can be moved to hosts with lower usage
when a host becomes overloaded.

• Hardware failover - when hardware devices on the host start to fail,
guests can be safely relocated so the host can be powered down
and repaired.

• Energy saving - guests can be redistributed to other hosts and host
systems powered off to save energy and cut costs in low usage
periods.

• Geographic migration - guests can be moved to another location for
lower latency or in serious circumstances.

417

Shared, networked storage is used for storing guest images. Without
shared storage migration is not possible.

An offline migration suspends the guest then moves an image of the
guests memory to the destination host. The guest is resumed on the
destination host and the memory the guest used on the source host is
freed.

The time an offline migration takes depends network bandwidth and
latency. A guest with 2GB of memory should take several seconds on
a 1 Gbit Ethernet link.

A live migration keeps the guest running on the source host and
begins moving the memory without stopping the guest. All modified
memory pages are monitored for changes and sent to the destination
while the image is sent. The memory is updated with the changed
pages. The process continues until the amount of pause time allowed
for the guest equals the predicted time for the final few pages to
be transfer. KVM estimates the time remaining and attempts to
transfer the maximum amount of page files from the source to the
destination until KVM predicts the amount of remaining pages can
be transferred during a very brief time while the virtualized guest is
paused. The registers are loaded on the new host and the guest is
then resumed on the destination host. If the guest cannot be merged
(which happens when guests are under extreme loads) the guest is
paused and then an offline migration is started instead.

The time an offline migration takes depends network bandwidth and
latency as well as activity on the guest. If the guest is using significant
I/O or CPU the migration will take much longer.

Para-virtualization Para-virtualization uses a special kernel, sometimes referred to as the
Xen kernel or the kernel-xen package. Para-virtualized guest kernels
are run concurrently on the host while using the host's libraries and
devices. A para-virtualized installation can have complete access to
all devices on the system which can be limited with security settings
(SELinux and file controls). Para-virtualization is faster than full
virtualization. Para-virtualization can effectively be used for load
balancing, provisioning, security and consolidation advantages.

As of Fedora 9 a special kernel will no longer be needed. Once this
patch is accepted into the main Linux tree all Linux kernels after that
version will have para-virtualization enabled or available.

Para-virtualized See Para-virtualization.

Para-virtualized drivers Para-virtualized drivers are device drivers that operate on fully
virtualized Linux guests. These drivers greatly increase performance
of network and block device I/O for fully virtualized guests.

PCI passthrough KVM and Xen hypervisors support attaching PCI devices on the
host system to virtualized guests. PCI passthrough allows guests
to have exclusive access to PCI devices for a range of tasks. PCI
passthrough allows PCI devices to appear and behave as if they were
physically attached to the guest operating system.

Glossary

418

phy device The phy device parameter allows guest's to access physical disks.
Physical disks includes:

• LVM volumes (for example, /dev/VolGroup00/LogVol02),

• disk partitions (for example, /dev/sda5), and

• whole block devices (for example, /dev/sda).

Physical mode provides the best performance as the hypervisor
bypasses extra layers of software on the host at the price of slightly
less flexibility in managing the device.

Security Enhanced Linux Short for Security Enhanced Linux, SELinux uses Linux Security
Modules (LSM) in the Linux kernel to provide a range of minimum
privilege required security policies.

tap:aio The tap:aio parameter sets the Xen hypervisor to use an advanced
access mode designed for safety and performance. File-based,
are accessed using a kernel thread and a user-space process. The
tap:aio method respects guest flush requests which makes it safer
than the file driver. The virtualization tools use tap:aio by default
for accessing file-based guest disks on the Xen Hypervisor.

Universally Unique Identifier A Universally Unique Identifier (UUID) is a standardized numbering
method for devices, systems and certain software objects in
distributed computing environments. Types of UUIDs in virtualization
include: ext2 and ext3 file system identifiers, RAID device
identifiers, iSCSI and LUN device identifiers, MAC addresses and
virtual machine identifiers.

Virtual machines A virtual machine is a software implementation of a physical
machine or programming language (for example the Java Runtime
Environment or LISP). Virtual machines in the context of virtualization
are operating systems running on virtualized hardware.

Virtualization Virtualization is a broad computing term for running software, usually
operating systems, concurrently and isolated from other programs
on one system. Most existing implementations of virtualization use a
hypervisor, a software layer on top of an operating system, to abstract
hardware. The hypervisor allows multiple operating systems to run
on the same physical system by giving the guest operating system
virtualized hardware. There are various methods for virtualizing
operating systems:
• Hardware-assisted virtualization is the technique used for full

virtualization with Xen and KVM.

• Para-virtualization is a technique used by Xen to run Linux guests.

• Software virtualization or emulation. Software virtualization uses
binary translation and other emulation techniques to run unmodified
operating systems. Software virtualization is significantly slower
than hardware-assisted virtualization or para-virtualization.
Software virtualization, in the form of QEMU, is unsupported by
Red Hat Enterprise Linux.

419

Red Hat Enterprise Linux 5 supports hardware-assisted, full
virtualization with the Xen and KVM hypervisors and software para-
virtualization with the Xen hypervisor for hosting Red Hat Enterprise
Linux guests.

Virtualized CPU A system has a number of virtual CPUs (VCPUs) relative to the
number of physical processor cores. The number of virtual CPUs is
finite and represents the total number of virtual CPUs that can be
assigned to guest virtual machines.

Xen Red Hat Enterprise Linux supports the Xen hypervisor and the
KVM hypervisor. Both hypervisors have different architectures and
development approaches. The Xen hypervisor runs underneath a Red
Hat Enterprise Linux operating system which acts as a host managing
system resources and virtualization APIs. The host is sometimes
referred to as dom0, or Domain0.

Glossary

420

421

Appendix A. Additional resources
To learn more about virtualization and Red Hat Enterprise Linux, refer to the following resources.

A.1. Online resources

• http://www.cl.cam.ac.uk/research/srg/netos/xen/ The project website of the Xen™ para-virtualization
machine manager from which the Red Hat kernel-xen package is derived. The site maintains
the upstream xen project binaries and source code and also contains information, architecture
overviews, documentation, and related links regarding xen and its associated technologies.

• The Xen Community website

http://www.xen.org/

• http://www.libvirt.org/ is the official website for the libvirt virtualization API.

• http://virt-manager.et.redhat.com/ is the project website for the Virtual Machine Manager (virt-
manager), the graphical application for managing virtual machines.

• Open Virtualization Center

http://www.openvirtualization.com1

• Red Hat Documentation

http://www.redhat.com/docs/

• Virt Tools

http://virt-tools.org/

• Virtualization technologies overview

http://virt.kernelnewbies.org2

• Red Hat Emerging Technologies group

http://et.redhat.com3

A.2. Installed documentation

• /usr/share/doc/xen-<version-number>/ is the directory which contains information about
the Xen para-virtualization hypervisor and associated management tools, including various example
configurations, hardware-specific information, and the current Xen upstream user documentation.

• man virsh and /usr/share/doc/libvirt-<version-number> — Contains sub commands
and options for the virsh virtual machine management utility as well as comprehensive information
about the libvirt virtualization library API.

• /usr/share/doc/gnome-applet-vm-<version-number> — Documentation for the GNOME
graphical panel applet that monitors and manages locally-running virtual machines.

http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://www.xen.org/
http://www.libvirt.org/
http://virt-manager.et.redhat.com/
http://www.openvirtualization.com/
http://www.redhat.com/docs/
http://virt-tools.org/
http://virt.kernelnewbies.org/
http://et.redhat.com/

Appendix A. Additional resources

422

• /usr/share/doc/libvirt-python-<version-number> — Provides details on the Python
bindings for the libvirt library. The libvirt-python package allows python developers to
create programs that interface with the libvirt virtualization management library.

• /usr/share/doc/python-virtinst-<version-number> — Provides documentation on
the virt-install command that helps in starting installations of Fedora and Red Hat Enterprise
Linux related distributions inside of virtual machines.

• /usr/share/doc/virt-manager-<version-number> — Provides documentation on the
Virtual Machine Manager, which provides a graphical tool for administering virtual machines.

423

Appendix B. Colophon
This manual was written in the DocBook XML v4.3 format.

This book is based on the work of Jan Mark Holzer, Chris Curran and Scott Radvan.

Other writing credits go to:

• Don Dutile contributed technical editing for the para-virtualized drivers section.

• Barry Donahue contributed technical editing for the para-virtualized drivers section.

• Rick Ring contributed technical editing for the Virtual Machine Manager Section.

• Michael Kearey contributed technical editing for the sections on using XML configuration files with
virsh and virtualized floppy drives.

• Marco Grigull contributed technical editing for the software compatibility and performance section.

• Eugene Teo contributed technical editing for the Managing Guests with virsh section.

Publican, the publishing tool which produced this book, was written by Jeffrey Fearn.

The Red Hat Localization Team consists of the following people:

• Simplified Chinese

• Leah Wei Liu

• Traditional Chinese

• Chester Cheng

• Terry Chuang

• Japanese

• Kiyoto Hashida

• Korean

• Eun-ju Kim

• French

• Sam Friedmann

• German

• Hedda Peters

• Italian

• Francesco Valente

• Brazilian Portuguese

• Glaucia de Freitas

• Leticia de Lima

Appendix B. Colophon

424

• Spanish

• Angela Garcia

• Gladys Guerrero

• Russian

• Yuliya Poyarkova

	Virtualization Guide
	Table of Contents
	Preface
	1. About this book
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. We need your feedback
	3.1. Technical review requests

	4. What is Virtualization?
	5. Types of Virtualization
	5.1. Full Virtualization
	5.2. Para-Virtualization
	5.3. Para-virtualized drivers

	6. How CIOs should think about virtualization

	Part I. Requirements and Limitations for Virtualization with Red Hat Enterprise Linux
	Chapter 1. System requirements
	Chapter 2. Xen restrictions and support
	Chapter 3. KVM restrictions and support
	Chapter 4. Hyper-V restrictions and support
	Chapter 5. Virtualization limitations
	5.1. General limitations for virtualization
	5.2. KVM limitations
	5.3. Xen limitations
	5.4. Application limitations

	Part II. Installation
	Chapter 6. Installing the virtualization packages
	6.1. Installing Xen with a new Red Hat Enterprise Linux installation
	6.2. Installing Xen packages on an existing Red Hat Enterprise Linux system
	6.3. Installing KVM with a new Red Hat Enterprise Linux installation
	6.4. Installing KVM packages on an existing Red Hat Enterprise Linux system

	Chapter 7. Virtualized guest installation overview
	7.1. Creating guests with virt-install
	7.2. Creating guests with virt-manager
	7.3. Installing guests with PXE

	Chapter 8. Guest operating system installation procedures
	8.1. Installing Red Hat Enterprise Linux 5 as a para-virtualized guest
	8.2. Installing Red Hat Enterprise Linux as a fully virtualized guest
	8.3. Installing Windows XP as a fully virtualized guest
	8.4. Installing Windows Server 2003 as a fully virtualized guest
	8.5. Installing Windows Server 2008 as a fully virtualized guest

	Part III. Configuration
	Chapter 9. Virtualized storage devices
	9.1. Creating a virtualized floppy disk controller
	9.2. Adding storage devices to guests
	9.3. Configuring persistent storage in Red Hat Enterprise Linux 5
	9.4. Add a virtualized CD-ROM or DVD device to a guest

	Chapter 10. Network Configuration
	10.1. Network address translation (NAT) with libvirt
	10.2. Bridged networking with libvirt

	Chapter 11. Pre-Red Hat Enterprise Linux 5.4 Xen networking
	11.1. Configuring multiple guest network bridges to use multiple Ethernet cards
	11.2. Red Hat Enterprise Linux 5.0 laptop network configuration

	Chapter 12. Xen Para-virtualized Drivers
	12.1. System requirements
	12.2. Para-virtualization Restrictions and Support
	12.3. Installing the Para-virtualized Drivers
	12.3.1. Common installation steps
	12.3.2. Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 3
	12.3.3. Installation and Configuration of Para-virtualized Drivers on Red Hat Enterprise Linux 4
	12.3.4. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 5
	12.3.5. Xen Para-virtualized Drivers on Red Hat Enterprise Linux 6

	12.4. Para-virtualized Network Driver Configuration
	12.5. Additional Para-virtualized Hardware Configuration
	12.5.1. Virtualized Network Interfaces
	12.5.2. Virtual Storage Devices

	Chapter 13. KVM Para-virtualized Drivers
	13.1. Installing the KVM Windows para-virtualized drivers
	13.2. Installing drivers with a virtualized floppy disk
	13.3. Using KVM para-virtualized drivers for existing devices
	13.4. Using KVM para-virtualized drivers for new devices

	Chapter 14. PCI passthrough
	14.1. Adding a PCI device with virsh
	14.2. Adding a PCI device with virt-manager
	14.3. PCI passthrough with virt-install
	14.4. PCI passthrough for para-virtualized Xen guests on Red Hat Enterprise Linux

	Chapter 15. SR-IOV
	15.1. Introduction
	15.2. Using SR-IOV
	15.3. Troubleshooting SR-IOV

	Chapter 16. KVM guest timing management

	Part IV. Administration
	Chapter 17. Server best practices
	Chapter 18. Security for virtualization
	18.1. Storage security issues
	18.2. SELinux and virtualization
	18.3. SELinux
	18.4. Virtualization firewall information

	Chapter 19. Managing guests with xend
	Chapter 20. Xen live migration
	20.1. A live migration example
	20.2. Configuring guest live migration

	Chapter 21. KVM live migration
	21.1. Live migration requirements
	21.2. Share storage example: NFS for a simple migration
	21.3. Live KVM migration with virsh
	21.4. Migrating with virt-manager

	Chapter 22. Remote management of virtualized guests
	22.1. Remote management with SSH
	22.2. Remote management over TLS and SSL
	22.3. Transport modes

	Part V. Virtualization Storage Topics
	Chapter 23. Using shared storage with virtual disk images
	23.1. Using iSCSI for storing virtual disk images
	23.1.1. How to set up an iSCSI target on Red Hat Enterprise Linux
	23.1.2. How to configure iSCSI on a libvirt KVM host and provision a guest using virt-install

	Part VI. Virtualization Reference Guide
	Chapter 24. Virtualization tools
	Chapter 25. Managing guests with virsh
	Chapter 26. Managing guests with the Virtual Machine Manager (virt-manager)
	26.1. The Add Connection window
	26.2. The Virtual Machine Manager main window
	26.3. The guest Overview tab
	26.4. Virtual Machine graphical console
	26.5. Starting virt-manager
	26.6. Restoring a saved machine
	26.7. Displaying guest details
	26.8. Status monitoring
	26.9. Displaying guest identifiers
	26.10. Displaying a guest's status
	26.11. Displaying virtual CPUs
	26.12. Displaying CPU usage
	26.13. Displaying memory usage
	26.14. Managing a virtual network
	26.15. Creating a virtual network

	Chapter 27. The xm command quick reference
	Chapter 28. Configuring the Xen kernel boot parameters
	Chapter 29. Configuring ELILO
	Chapter 30. libvirt configuration reference
	Chapter 31. Xen configuration files

	Part VII. Tips and Tricks
	Chapter 32. Tips and tricks
	32.1. Automatically starting guests
	32.2. Changing between the KVM and Xen hypervisors
	32.2.1. Xen to KVM
	32.2.2. KVM to Xen

	32.3. Using qemu-img
	32.4. Overcommitting Resources
	32.5. Modifying /etc/grub.conf
	32.6. Verifying virtualization extensions
	32.7. Accessing data from a guest disk image
	32.8. Setting KVM processor affinities
	32.9. Generating a new unique MAC address
	32.10. Limit network bandwidth for a Xen guest
	32.11. Configuring Xen processor affinities
	32.12. Modifying the Xen hypervisor
	32.13. Very Secure ftpd
	32.14. Configuring LUN Persistence
	32.15. Disable SMART disk monitoring for guests
	32.16. Cleaning up old Xen configuration files
	32.17. Configuring a VNC Server
	32.18. Cloning guest configuration files
	32.19. Duplicating an existing guest and its configuration file

	Chapter 33. Creating custom libvirt scripts
	33.1. Using XML configuration files with virsh

	Part VIII. Troubleshooting
	Chapter 34. Troubleshooting Xen
	34.1. Debugging and troubleshooting Xen
	34.2. Log files overview
	34.3. Log file descriptions
	34.4. Important directory locations
	34.5. Troubleshooting with the logs
	34.6. Troubleshooting with the serial console
	34.7. Para-virtualized guest console access
	34.8. Fully virtualized guest console access
	34.9. Common Xen problems
	34.10. Guest creation errors
	34.11. Troubleshooting with serial consoles
	34.11.1. Serial console output for Xen
	34.11.2. Xen serial console output from para-virtualized guests
	34.11.3. Serial console output from fully virtualized guests

	34.12. Xen configuration files
	34.13. Interpreting Xen error messages
	34.14. The layout of the log directories

	Chapter 35. Troubleshooting
	35.1. Identifying available storage and partitions
	35.2. After rebooting Xen-based guests the console freezes
	35.3. Virtualized Ethernet devices are not found by networking tools
	35.4. Loop device errors
	35.5. Failed domain creation caused by a memory shortage
	35.6. Wrong kernel image error
	35.7. Wrong kernel image error - non-PAE kernel on a PAE platform
	35.8. Fully-virtualized 64 bit guest fails to boot
	35.9. A missing localhost entry causes virt-manager to fail
	35.10. Microcode error during guest boot
	35.11. Python depreciation warning messages when starting a virtual machine
	35.12. Enabling Intel VT and AMD-V virtualization hardware extensions in BIOS
	35.13. KVM networking performance

	Chapter 36. Troubleshooting the Xen para-virtualized drivers
	36.1. Red Hat Enterprise Linux 5 Virtualization log file and directories
	36.2. Para-virtualized guest fail to load on a Red Hat Enterprise Linux 3 guest operating system
	36.3. A warning message is displayed while installing the para-virtualized drivers on Red Hat Enterprise Linux 3
	36.4. Manually loading the para-virtualized drivers
	36.5. Verifying the para-virtualized drivers have successfully loaded
	36.6. The system has limited throughput with para-virtualized drivers

	Glossary
	Appendix A. Additional resources
	A.1. Online resources
	A.2. Installed documentation

	Appendix B. Colophon

