
Red Hat Enterprise Linux 6

Developer Guide
An introduction to application development

tools in Red Hat Enterprise Linux 6

Dave Brolley

William Cohen

Roland Grunberg

Aldy Hernandez

Karsten Hopp

Jakub Jelinek

Developer Guide

Jeff Johnston

Benjamin Kosnik

Aleksander Kurtakov

Chris Moller

Phil Muldoon

Andrew Overholt

Charley Wang

Kent Sebastian

Red Hat Enterprise Linux 6 Developer Guide
An introduction to application development tools in Red Hat
Enterprise Linux 6
Edition 1

Author Dave Brolley brolley@redhat.com
Author William Cohen wcohen@redhat.com
Author Roland Grunberg rgrunber@redhat.com
Author Aldy Hernandez aldyh@redhat.com
Author Karsten Hopp karsten@redhat.com
Author Jakub Jelinek jakub@redhat.com
Author Jeff Johnston jjohnstn@redhat.com
Author Benjamin Kosnik bkoz@redhat.com
Author Aleksander Kurtakov akurtako@redhat.com
Author Chris Moller cmoller@redhat.com
Author Phil Muldoon pmuldoon@redhat.com
Author Andrew Overholt overholt@redhat.com
Author Charley Wang cwang@redhat.com
Author Kent Sebastian kent.k.sebastian@gmail.com
Editor Don Domingo
Editor Jacquelynn East jeast@redhat.com

Copyright © 2010 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281

mailto:brolley@redhat.com
mailto:wcohen@redhat.com
mailto:rgrunber@redhat.com
mailto:aldyh@redhat.com
mailto:karsten@redhat.com
mailto:jakub@redhat.com
mailto:jjohnstn@redhat.com
mailto:bkoz@redhat.com
mailto:akurtako@redhat.com
mailto:cmoller@redhat.com
mailto:pmuldoon@redhat.com
mailto:overholt@redhat.com
mailto:cwang@redhat.com
mailto:kent.k.sebastian@gmail.com
mailto:jeast@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

Developer Guide

 Fax: +1 919 754 3701

This document describes the different features and utilities that make Red Hat Enterprise Linux 6
an ideal enterprise platform for application development. It focuses on Eclipse as an end-to-end
integrated development environment (IDE), but also includes command-line tools and other utilities
outside Eclipse.

v

Preface ix
1. Document Conventions ... ix

1.1. Typographic Conventions ... ix
1.2. Pull-quote Conventions ... x
1.3. Notes and Warnings .. xi

2. Getting Help and Giving Feedback ... xii
2.1. Do You Need Help? .. xii
2.2. We Need Feedback! ... xii

1. Introduction to Eclipse 1
1.1. Understanding Eclipse Projects ... 1
1.2. Help In Eclipse .. 4
1.3. Development Toolkits ... 7

2. The Eclipse Integrated Development Environment (IDE) 9
2.1. User Interface .. 9
2.2. Useful Hints ... 15

2.2.1. The quick access menu ... 15
2.2.2. libhover Plug-in .. 21

3. Collaborating 25
3.1. Concurrent Versions System (CVS) ... 25

3.1.1. CVS Overview ... 25
3.1.2. Typical scenario ... 26
3.1.3. CVS Documentation .. 27

3.2. Apache Subversion (SVN) .. 27
3.2.1. Installation ... 27
3.2.2. SVN repository .. 27
3.2.3. Importing Data ... 28
3.2.4. Working Copies ... 29
3.2.5. Committing changes .. 30
3.2.6. SVN Documentation .. 32

3.3. Git ... 32
3.3.1. Installation ... 34
3.3.2. Initial Setup ... 34
3.3.3. Git repository ... 35
3.3.4. Untracked files .. 37
3.3.5. Unmodified files ... 38
3.3.6. Modified Status .. 39
3.3.7. Staged files ... 39
3.3.8. Remote repositories ... 41
3.3.9. Commit logs .. 42
3.3.10. Fixing problems ... 43
3.3.11. Git documentation .. 44

4. Libraries and Runtime Support 47
4.1. Version Information ... 47
4.2. Compatibility .. 48

4.2.1. API Compatibility ... 48
4.2.2. ABI Compatibility ... 49
4.2.3. Policy .. 50
4.2.4. Static Linking ... 51
4.2.5. Core Libraries .. 52
4.2.6. Non-Core Libraries .. 53

4.3. Library and Runtime Details .. 53
4.3.1. The GNU C Library ... 53

Developer Guide

vi

4.3.2. The GNU C++ Standard Library ... 56
4.3.3. Boost .. 58
4.3.4. Qt ... 61
4.3.5. KDE Development Framework .. 63
4.3.6. NSS Shared Databases ... 64
4.3.7. Python .. 65
4.3.8. Java .. 66
4.3.9. Ruby ... 67
4.3.10. Perl ... 68

5. Compiling and Building 71
5.1. GNU Compiler Collection (GCC) ... 71

5.1.1. GCC Status and Features .. 71
5.1.2. Language Compatibility .. 72
5.1.3. Object Compatibility and Interoperability .. 74
5.1.4. Backwards Compatibility Packages ... 75
5.1.5. Previewing RHEL6 compiler features on RHEL5 .. 75
5.1.6. Running GCC .. 76
5.1.7. GCC Documentation .. 82

5.2. Distributed Compiling .. 82
5.3. Autotools .. 83

5.3.1. Autotools Plug-in for Eclipse ... 83
5.3.2. Configuration Script ... 83
5.3.3. Autotools Documentation ... 84

5.4. Eclipse Built-in Specfile Editor .. 85

6. Debugging 87
6.1. Installing Debuginfo Packages .. 87
6.2. GDB .. 87

6.2.1. Simple GDB .. 88
6.2.2. Running GDB .. 90
6.2.3. Conditional Breakpoints ... 91
6.2.4. Forked Execution ... 92
6.2.5. Debugging Individual Threads .. 94
6.2.6. Alternative User Interfaces for GDB .. 98
6.2.7. GDB Documentation .. 98

6.3. Variable Tracking at Assignments .. 98
6.4. Python Pretty-Printers .. 99

7. Profiling 103
7.1. Profiling In Eclipse .. 103
7.2. Valgrind .. 104

7.2.1. Valgrind Tools .. 105
7.2.2. Using Valgrind ... 105
7.2.3. Valgrind Plug-in for Eclipse ... 106
7.2.4. Valgrind Documentation .. 106

7.3. OProfile .. 106
7.3.1. OProfile Tools .. 107
7.3.2. Using OProfile ... 107
7.3.3. OProfile Plug-in For Eclipse .. 108
7.3.4. OProfile Documentation ... 108

7.4. SystemTap .. 109
7.4.1. SystemTap Compile Server .. 109
7.4.2. SystemTap Support for Unprivileged Users .. 110
7.4.3. SSL and Certificate Management .. 111

vii

7.4.4. SystemTap Documentation ... 112
7.5. Performance Counters for Linux (PCL) Tools and perf ... 112

7.5.1. Perf Tool Commands ... 112
7.5.2. Using Perf ... 113

7.6. ftrace ... 115
7.6.1. Using ftrace ... 115
7.6.2. ftrace Documentation ... 115

8. Documentation Tools 117
8.1. Publican ... 117

8.1.1. Commands .. 117
8.1.2. Create a New Document .. 117
8.1.3. Files .. 118
8.1.4. Building a Document .. 119
8.1.5. Packaging a Publication ... 120
8.1.6. Brands .. 120
8.1.7. Building a Website ... 121
8.1.8. Documentation ... 122

8.2. Doxygen .. 122
8.2.1. Doxygen Supported Output and Languages .. 122
8.2.2. Getting Started .. 123
8.2.3. Running Doxygen .. 124
8.2.4. Documenting the Sources .. 125
8.2.5. Resources ... 128

A. Revision History 131

Index 135

viii

ix

Preface
This book describes the some of the more commonly-used programming resources in Red Hat
Enterprise Linux 6. Each phase of the application development process is described as a separate
chapter, enumerating tools that accomplish different tasks for that particular phase.

Note that this is not a comprehensive listing of all available development tools in Red Hat Enterprise
Linux 6. In addition, each section herein does not contain detailed documentation of each tool. Rather,
this book provides a brief overview of each tool, with a short description of updates to the tool in Red
Hat Enterprise Linux 6 along with (more importantly) references to more detailed information.

In addition, this book focuses on Eclipse as an end-to-end integrated development platform. This was
done to highlight the Red Hat Enterprise Linux 6 version of Eclipse and several Eclipse plug-ins.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

x

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Notes and Warnings

xi

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

Preface

xii

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http://access.redhat.com. Through the customer portal, you can:

• search or browse through a knowledgebase of technical support articles about Red Hat products.

• submit a support case to Red Hat Global Support Services (GSS).

• access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red_Hat_Enterprise_Linux.

When submitting a bug report, be sure to mention the manual's identifier: doc-Developer_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

Chapter 1.

1

Introduction to Eclipse
Eclipse is a powerful development environment that provides tools for each phase of the development
process. It is integrated into a single, fully configurable user interface for ease of use, featuring a
pluggable architecture which allows for extension in a variety of ways.

Eclipse integrates a variety of disparate tools into a unified environment to create a rich development
experience. The Valgrind plug-in, for example, allows programmers to perform memory profiling
(normally done through the command line) through the Eclipse user interface. This functionality is not
exclusive only to Eclipse.

Being a graphical application, Eclipse is a welcome alternative to developers who find the command
line interface intimidating or difficult. In addition, Eclipse's built-in Help system provides extensive
documentation for each integrated feature and tool. This greatly decreases the initial time investment
required for new developers to become fluent in its use.

The traditional (i.e. mostly command-line based) Linux tools suite (gcc, gdb, etc) and Eclipse offer
two distinct approaches to programming. Most traditional Linux tools are far more flexible, subtle,
and (in aggregate) more powerful than their Eclipse-based counterparts. These traditional Linux
tools, on the other hand, are more difficult to master, and offer more capabilities than are required by
most programmers or projects. Eclipse, by contrast, sacrifices some of these benefits in favor of an
integrated environment, which in turn is suitable for users who prefer their tools accessible in a single,
graphical interface.

1.1. Understanding Eclipse Projects

Eclipse stores all project and user files in a designated workspace. You can have multiple workspaces
and can switch between each one on the fly. However, Eclipse will only be able to load projects
from the current active workspace. To switch between active workspaces, navigate to File > Switch
Workspace > /path/to/workspace. You can also add a new workspace through the Workspace
Launcher wizard; to open this wizard, navigate to File > Switch Workspace > Other.

Chapter 1. Introduction to Eclipse

2

Figure 1.1. Workspace Launcher

For information about configuring workspaces, refer to Reference > Preferences > Workspace in the
Workbench User Guide (Help Contents).

A project can be imported directly into Eclipse if it contains the necessary Eclipse metafiles. Eclipse
uses these files to determine what kind of perspectives, tools, and other user interface configurations
to implement.

As such, when attempting to import a project that has never been used on Eclipse, it may be
necessary to do so through the New Project wizard instead of the Import wizard. Doing so will create
the necessary Eclipse metafiles for the project, which you can also include when you commit the
project.

Understanding Eclipse Projects

3

Figure 1.2. New Project Wizard

The Import wizard is suitable mostly for projects that were created or previously edited in Eclipse, i.e.
projects that contain the necessary Eclipse metafiles.

Chapter 1. Introduction to Eclipse

4

Figure 1.3. Import Wizard

1.2. Help In Eclipse

Eclipse features a comprehensive internal help library that covers nearly every facet of the Integrated
Development Environment (IDE). Every Eclipse documentation plug-in installs its content to this
library, where it is indexed accordingly. To access this library, use the Help menu.

Help In Eclipse

5

Figure 1.4. Help

To open the main Help menu, navigate to Help > Help Contents. The Help menu displays all the
available content provided by installed documentation plug-ins in the Contents field.

Chapter 1. Introduction to Eclipse

6

Figure 1.5. Help Menu

The tabs at the bottom of the Contents field provides different options for accessing Eclipse
documentation. You can navigate through each "book" by section/header or by simply searching
via the Search field. You can also bookmark sections in each book and access them through the
Bookmarks tab.

The Workbench User Guide documents all facets of the Eclipse user interface extensively. It contains
very low-level information on the Eclipse workbench, perspectives, and different concepts useful in
understanding how Eclipse works. The Workbench User Guide is an ideal resource for users with little
to intermediate experience with Eclipse or IDEs in general. This documentation plug-in is installed by
default.

The Eclipse help system also includes a dynamic help feature. This feature opens a new window
in the workbench that displays documentation relating to a selected interface element. To activate
dynamic help, navigate to Help > Dynamic Help.

 Development Toolkits

7

Figure 1.6. Dynamic Help

The rightmost window in Figure 1.6, “Dynamic Help” displays help topics related to the Outline view,
which is the selected user interface element.

1.3. Development Toolkits

Red Hat Enterprise Linux 6 supports the primary Eclipse development toolkits for C/C++ (CDT) and
Java (JDT). These toolkits provide a set of integrated tools specific to their respective languages.
Both toolkits supply Eclipse GUI interfaces with the required tools for editing, building, running, and
debugging source code.

Each toolkit provides custom editors for their respective language. Both CDT and JDT also provide
multiple editors for a variety of file types used in a project. For example, the CDT supplies different
editors specific for C/C++ header files and source files, along with a Makefile editor.

Toolkit-supplied editors provide error parsing for some file types (without requiring a build), although
this may not be available on projects where cross-file dependencies exist. The CDT source file
editor, for example, provides error parsing in the context of a single file, but some errors may only
be visible when a complete project is built. Other common features among toolkit-supplied editors
are colorization, code folding, and automatic indentation. In some cases, other plug-ins provide
advanced editor features such as automatic code completion, hover help, and contextual search; a

Chapter 1. Introduction to Eclipse

8

good example of such a plug-in is libhover, which adds these extended features to C/C++ editors
(refer to Section 2.2.2, “libhover Plug-in” for more information).

User interfaces for most (if not all) steps in creating a project's target (inary, file, library, etc) are
provided by the build functionalities of each toolkit. Each toolkit also provides Eclipse with the means
to automate as much of the build process as possible, helping you concentrate more on writing code
than building it. Both toolkits also add useful UI elements for finding problems in code preventing a
build; for example, Eclipse sends compile errors to the Problems view. For most error types, Eclipse
allows you to navigate directly to an error's cause (file and code segment) by simply clicking on its
entry in the Problems view.

As is with editors, other plug-ins can also provide extended capabilities for building a project — the
Autotools plug-in, for example, allows you to add portability to a C/C++ project, allowing other
developers to build the project in a wide variety of environments (for more information, refer to
Section 5.3, “Autotools”).

For projects with executable/binary targets, each toolkit also supplies run/debug functionalities to
Eclipse. In most projects, "run" is simply executed as a "debug" action without interruptions. Both
toolkits tie the Debug view to the Eclipse editor, allowing breakpoints to be set. Conversely, triggered
breakpoints open their corresponding functions in code in the editor. Variable values can also be
explored by clicking their names in the code.

For some projects, build integration is also possible. With this, Eclipse automatically rebuilds a project
or installs a "hot patch" if you edit code in the middle of a debugging session. This allows a more
streamlined debug-and-correct process, which some developers prefer.

The Eclipse Help menu provides extensive documentation on both CDT and JDT. For more
information on either toolkit, refer to the Java Development User Guide or C/C++ Development User
Guide in the Eclipse Help Contents.

Chapter 2.

9

The Eclipse Integrated Development
Environment (IDE)
The entire user interface in Figure 2.1, “Eclipse User Interface (default)” is referred to as the Eclipse
workbench. It is generally composed of a code Editor, Project Explorer window, and several views.
All elements in the Eclipse workbench are configurable, and fully documented in the Workbench User
Guide (Help Contents). Refer to Section 2.2, “Useful Hints” for a brief overview on customizing the
user interface.

Eclipse features different perspectives. A perspective is a set of views and editors most useful to
a specific type of task or project; the Eclipse workbench can contain one or more perspectives.
Figure 2.1, “Eclipse User Interface (default)” features the default perspective for C/C++.

Eclipse also divides many functions into several classes, housed inside distinct menu items. For
example, the Project menu houses functions relating to compiling/building a project. The Window
menu contains options for creating and customizing perspectives, menu items, and other user
interface elements. For a brief overview of each main menu item, refer to Reference > C/C++ Menubar
in the C/C++ Development User Guide or Reference > Menus and Actions in the Java Development
User Guide.

The following sections provide a high-level overview of the different elements visible in the default user
interface of the Eclipse integrated development environment (IDE).

2.1. User Interface

The Eclipse workbench provides a user interface for many features and tools essential for every phase
of the development process. This section provides an overview of Eclipse's primary user interface.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

10

Figure 2.1. Eclipse User Interface (default)

Figure 2.1, “Eclipse User Interface (default)” displays the default workbench for C/C++ projects. To
switch between available perspectives in a workbench, press Ctrl+F8. For some hints on perspective
customization, refer to Section 2.2, “Useful Hints”. The figures that follow describe each basic element
visible in the default C/C++ perspective.

User Interface

11

Figure 2.2. Eclipse Editor

The Editor is used to write and edit source files. Eclipse can autodetect and load an appropriate
language editor (e.g. C Editor for files ending in .c) for most types of source files. To configure the
settings for the Editor, navigate to Window > Preferences > language (e.g. Java, C++) >
Code Style.

Figure 2.3. Project Explorer

Chapter 2. The Eclipse Integrated Development Environment (IDE)

12

The Project Explorer View provides a hierarchical view of all project resources (binaries, source files,
etc.). You can open, delete, or otherwise edit any files from this view.

The View Menu button in the Project Explorer View allows you to configure whether projects or
working sets are the top-level items in the Project Explorer View. A working set is a group of projects
arbitrarily classified as a single set; working sets are handy in organizing related or linked projects.

Figure 2.4. Outline Window

The Outline window provides a condensed view of the code in a source file. It details different
variables, functions, libraries, and other structural elements from the selected file in the Editor, all of
which are editor-specific.

Figure 2.5. Console View

Some functions and plugged-in programs in Eclipse send their output to the Console view. This view's
Display Selected Console button allows you to switch between different consoles.

User Interface

13

Figure 2.6. Tasks View

The Tasks view allows you to track specially-marked reminder comments in the code. This view
shows the location of each task comment and allows you to sort them in several ways.

Figure 2.7. Sample of Tracked Comment

Most Eclipse editors track comments marked with //FIXME or //TODO tags. Tracked comments
—i.e. task tags—are different for source files written in other languages. To add or configure task
tags, navigate to Window > Preferences and use the keyword task tags to display the task tag
configuration menus for specific editors/languages.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

14

Figure 2.8. Task Properties

Alternatively, you can also use Edit > Add Task to open the task Properties menu (Figure 2.8, “Task
Properties”). This will allow you to add a task to a specific location in a source file without using a task
tag.

Figure 2.9. Problems View

Useful Hints

15

The Problems view displays any errors or warnings that occurred during the execution of specific
actions such as builds, cleans, or profile runs. To display a suggested "quick fix" to a specific problem,
select it and press Ctrl+1.

2.2. Useful Hints

Many Eclipse users learn useful tricks and troubleshooting techniques throughout their experience
with the Eclipse user interface. This section highlights some of the more useful hints that users new
to Eclipse may be interested in learning. The Tips and Tricks section of the Workbench User Guide
contains a more extensive list of Eclipse tips.

2.2.1. The quick access menu
One of the most useful Eclipse tips is to use the quick access menu. Typing a word in the quick
access menu will present a list of Views, Commands, Help files and other actions related to that word.
To open this menu, press Ctrl+3.

Figure 2.10. Quick Access Menu

Chapter 2. The Eclipse Integrated Development Environment (IDE)

16

In Figure 2.10, “Quick Access Menu”, clicking Views > Project Explorer will select the Project
Explorer window. Clicking any item from the Commands, Menus, New, or Preferences categories to
run the selected item. This is similar to navigating to or clicking the respective menu options or taskbar
icons. You can also navigate through the quick access menu using the arrow keys.

It is also possible to view a complete list of all keyboard shortcut commands; to do so, press
Shift+Ctrl+L.

Figure 2.11. Keyboard Shortcuts

To configure Eclipse keyboard shortcuts, press Shift+Ctrl+L again while the Keyboard Shortcuts
list is open.

The quick access menu

17

Figure 2.12. Configuring Keyboard Shortcuts

To customize the current perspective, navigate to Window > Customize Perspective. This opens the
Customize Perspective menu, allowing the visible tool bars, main menu items, command groups,
and short cuts to be configured.

The location of each view within the workbench can be customized by clicking on a view's title and
dragging it to a desired location.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

18

Figure 2.13. Customize Perspective Menu

Figure 2.13, “Customize Perspective Menu” displays the Tool Bar Visibility tab. As the name
suggests, this tab allows you to toggle the visibility of the tool bars (Figure 2.14, “Toolbar”).

Figure 2.14. Toolbar

The following figures display the other tabs in the Customize Perspective Menu:

The quick access menu

19

Figure 2.15. Menu Visibility Tab

The Menu Visibility tab configures what functions are visible in each main menu item. For a brief
overview of each main menu item, refer to Reference > C/C++ Menubar in the C/C++ Development
User Guide or Reference > Menus and Actions in the Java Development User Guide.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

20

Figure 2.16. Command Group Availability Tab

Command groups add functions or options to the main menu or tool bar area. Use the Command
Group Availability tab to add or remove a Command group. The Menubar details and Toolbar
details fields display the functions or options added by the Command group to either Main Menu or
Toolbar Area, respectively.

libhover Plug-in

21

Figure 2.17. Shortcuts Tab

The Shortcuts tab configures what menu items are available under the following submenus:

• File > New

• Window > Open Perspective

• Window > Show View

2.2.2. libhover Plug-in

The libhover plug-in for Eclipse provides plug-and-play hover help support for the GNU C Library
and GNU C++ Standard Library. This allows developers to refer to existing documentation on glibc
and libstdc++ libraries within the Eclipse IDE in a more seamless and convenient manner via hover
help and code completion.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

22

For C++ library resources, libhover needs to index the file using the CDT indexer. Indexing parses
the given file in context of a build; the build context determines where header files come from and
how types, macros, and similar items are resolved. To be able to index a C++ source file, libhover
usually requires you to perform an actual build first, although in some cases it may already know
where the header files are located.

The libhover plug-in may need indexing for C++ sources because a C++ member function name
is not enough information to look up its documentation. For C++, the class name and parameter
signature of the function is also required to determine exactly which member is being referenced. This
is because C++ allows different classes to have members of the same name, and even within a class,
members may have the same name but with different method signatures.

In addition, C++ also has type definitions and templated classes to deal with. Such information
requires parsing an entire file and its associated include files; libhover can only do this via
indexing.

C functions, on the other hand, can be referenced in their documentation by name alone. As such,
libhover does not need to index C source files in order to provide hover help or code completion.
Simply choose an appropriate C header file to be included for a selection.

2.2.2.1. Setup and Usage

Hover help for all installed libhover libraries is enabled by default, and it can be disabled per
project. To disable or enable hover help for a particular project, right-click the project name and click
Properties. On the menu that appears, navigate to C/C++ General > Documentation. Check or
uncheck a library in the Help books section to enable or disable hover help for that particular library.

Figure 2.18. Enabling/Disabling Hover Help

libhover Plug-in

23

Disabling hover help from a particular library may be preferable, particularly if multiple libhover
libraries overlap in functionality. For example, the newlib library (whose libhover library plug-in is
supported in Red Hat Enterprise Linux 6) contains functions whose names overlap with those in the
GNU C library (provided by default); having libhover plugins for both newlib and glibc installed
would mean having to disable one.

When multiple libhover libraries libraries are enabled and there exists a functional overlap between
libraries, the Help content for the function from the first listed library in the Help books section
will appear in hover help (i.e. in Figure 2.18, “Enabling/Disabling Hover Help”, glibc). For code
completion, libhover will offer all possible alternatives from all enabled libhover libraries.

To use hover help, simply hover the mouse over a function name or member function name in the
C/C++ Editor. After a few seconds, libhover will display library documentation on the selected C
function or C++ member function.

Figure 2.19. Using Hover Help

To use code completion, select a string in the code and press Ctrl+Space. This will display all
possible functions given the selected string; click on a possible function to view its description.

Chapter 2. The Eclipse Integrated Development Environment (IDE)

24

Figure 2.20. Using Code Completion

Chapter 3.

25

Collaborating
Effective revision control is essential to all multi-developer projects. It allows all developers in a team
to create, review, revise, and document code in a systematic and orderly manner. Red Hat Enterprise
Linux 6 supports three of the most popular open-source revision control systems: CVS, SVN, and Git.
The tools for these revision control systems provide access to a wide range of publically available
open-source code, as well as the capability to set up individual internal code repositories.

The following section provides a brief overview and references to relevant documentation for each
tool.

3.1. Concurrent Versions System (CVS)
Concurrent Versions System (CVS) is a centralized version control system based on RCS format with
a client-server architecture. It was the first version control system and the predecessor for Subversion
(SVN).

3.1.1. CVS Overview
This section discusses the various elements of CVS, both the good and the bad.

CVS was developed when network connectivity was unreliable and would often drop out. This meant
that if several files were committed at once and the network dropped out, the commit would fail. This
can still occur now if a network is unreliable but is less common with modern networking infrastructure.
If it happens, the CVS administrator has two options to resolve the problem. The first is to use the
admin command to remove stall locked files and back out the changed files. The second option is to
reissue the commit command.

CVS uses one central location for making back-ups, which is useful for an unstable network. It allows
the enforcement of a commit policy through manually prepared triggers (automated tests, builds,
Access Control Lists (ACLs), integration with a bug tracking system) due to centralized architecture.
This offers one central location for making back-ups.

To create more detailed commits to the backup, CVS can also expand keywords that are marked
by the at-sign (@) to record commit details (committer name, commit message, commit time, for
example) into a committed file.

In order to keep track of these commits, CVS uses a server to track the changes for each file
separately and in reverse time order. By doing so, the latest version is stored directly and can be
retrieved quickly, where older versions must be recomputed by the server. Each changed, committed
file is tracked separately with an independent revision identifier. This can make it difficult to discover
which files have been changed by the commit when multiple changed files are committed. To counter
this, users need to tag the repository state whenever a need exists to refer back and view the
changes.

The CVS repository can be accessed by two methods. If the repository is on the same machine as the
client (:local: access method) then the client spawns the server on its behalf. If the repository is on
a remote machine, the server can be started with rsh/SSH (CVS_RHS environment variable) by a client
or by an inet daemon (/etc/xinetd.d/cvs) and different authentication methods (:gserver:
access method integrates Kerberos authentication, for example) can be used.

Finally, for security a client-server approach is used with CVS. This means that the client is dependent
on connectivity to the server and cannot perform any operation (committing, or reading the commit log)
without permission to access the server.

Chapter 3. Collaborating

26

3.1.2. Typical scenario
This is a sequence of commands demonstrating CVS repository creation in the $CVSROOT directory
(using an absolute path to signal :local: access method), importing sources from $SOURCES,
checking them out from the repository into $WORKDIR, modifying some files, and committing the
changes.

Procedure 3.1. Using CVS
1. Initialize CVS storage.

$ mkdir "$CVSROOT"
$ cvs -d "$CVSROOT" init

This creates the CVSROOT subdirectory under $CVSROOT with repositories configuration.

2. Import code from $SOURCES directory into CVS as $REPOSITORY, tagged with $VENDOR_TAG
and $RELEASE_TAG with a commit $MESSAGE.

$ cd "$SOURCES"
$ cvs -d "$CVSROOT" import -m "$MESSAGE" "$REPOSITORY" \
 "$VENDOR_TAG" "$RELEASE_TAG"

The $SOURCES content should be imported into CVS under $CVSROOT/$REPOSITORY. It is
possible to have more repositories in one CVS storage, though this example just uses the one.
The $VENDOR_TAG and $RELEASE_TAG are tags for implicit repository branches.

3. Different developers can now check the code out into $WORKDIR.

$ cd "$WORKDIR"
$ cvs -d "$CVSROOT" checkout "$REPOSITORY"

Check out directory

Do not check out into the original $SOURCES. This could cause data corruption on the client
side and CVS will print errors on various CVS invocations.

4. The latest version of the CVS repository has been transfered into the $REPOSITORY subdirectory.
The developer can also check out multiple repositories from one server.

$ cd $REPOSITORY

5. To schedule adding a new $FILE use:

$ vi "$FILE"
$ cvs add "$FILE"

CVS Documentation

27

6. The developer can modify an $EXISTING_FILE.

$ vi "$EXISTING_FILE"

7. Finally, the developer can commit these changes with a $COMMIT_MESSAGE.

$ cvs commit -m "$COMMIT_MESSAGE"

It is possible to export the $CVSROOT value as a CVSROOT environment variable and the cvs tool will
respect it. This can free the developer from needing to repetitively supply the -d "$CVSROOT" option.
The value is stored in the CVS helper subdirectory at initial check-out, and the CVS tool takes the
value from there automatically.

3.1.3. CVS Documentation
The CVS manual page can be accessed with man cvs.

There is also a local FAQ page located in /usr/share/doc/cvs-*/FAQ.

CVS information pages are available at http://ximbiot.com/cvs/manual/.

The CVS home page is located at http://www.nongnu.org/cvs/.

3.2. Apache Subversion (SVN)
Subversion is a version control system that manages files and directories, the changes made to them,
and can recover and examine them in case of a fault. It was created to match CVS's features and
preserve the same development model, and to address any problems often encountered with CVS.
This allowed CVS users to convert to SVN with minimal effort.

This section will cover the installation of SVN and provide details on the everyday uses of SVN.

3.2.1. Installation
SVN can be installed with a binary package, directly from source code, or from the console.

The easiest way to install SVN would be through the console with the command yum install
subversion. Selecting this option ensures that only Red Hat certified packages are used and
removes the need to manually update them.

Finally, SVN can be installed from source code, though this can be quite complex. From the SVN
website, download the latest released source code and follow the instructions in the install file.

3.2.2. SVN repository
In order to begin using SVN, first a new repository needs to be created. SVN has no way to determine
the difference between projects; it is up to the user to administer the file tree and place the project in
separate directories as they prefer. Use the following commands to create the repository:

mkdir /var/svn
svnadmin create /var/svn/repos
ls /var/svn/repos/

http://ximbiot.com/cvs/manual/
http://www.nongnu.org/cvs/

Chapter 3. Collaborating

28

conf db format hooks locks README.txt

This command will create the new directory /var/svn/repos with the required database files.

The SVN repository is accessed with a URL. Usually these use the standard syntax of http:// but it is
not limited by this. It also accepts the following URL forms:

file:///
Direct repository access (on local disk)

http://
Access with WebDAV protocol to Subversion-aware Apache server

https://
Same as http:// but with SSL encryption

svn://
Access via custom protocol to an svnserver server

svn+ssh://
Same as svn:// but through an SSH tunnel.

Spaces in the URL

If the URL contains spaces place quotation marks around it to ensure the shell treats it as a
single argument. Otherwise the URL will be invalid.

3.2.3. Importing Data
Assuming that a project consisting of multiple files has already been created, organize them so
that they are all in one directory. It is recommended that you use three top-level directories named
branches, tags, and trunk. This is not required by SVN but it is a popular convention. The trunk
directory should contain the projects files, and the branches and tags directories should remain
empty. For example:

myproject/branches/
myproject/tags/
myproject/trunk
 foo.c
 bar.c
 Makefile

Once the information has been organized appropriately it is time to import it into the SVN repository.
This is done with the svn import command. For example:

$ svn import /path/to/mytree \
 http://host.example.com/svn/repo/myproject \
 -m "Initial import"
Adding myproject/foo.c
Adding myproject/bar.c
Adding myproject/subdir
Adding myproject/subdir/quux.h

Working Copies

29

Committed revision 1.
$

As can be seen, SVN creates the required directories based on how the file tree is set up. It can now
be viewed at the URL created, or by the command:

$ svn list http://host.example.com/svn/repo/myproject

3.2.4. Working Copies
Now that the first revision of the project has been checked into the repository, it can be edited and
worked on. To do this, a working copy needs to be created. This is done with the svn checkout
command. For example:

$ svn checkout http://host.example.com/svn/repo/trunk
A trunk/README
A trunk/INSTALL
A trunk/src/main.c
A trunk/src/header.h
...
Checked out revision 8810.
$

A directory with a working copy of the project is now created on the local machine. It is also possible to
specify where the local directory a project is checked out to with the following command:

$ svn checkout http://host.example.com/svn/repo/trunk my-working-copy

If the local directory specified does not exist, SVN will create it.

.svn subdirectory

Every directory in the working copy contains a subdirectory called .svn. Being an administrative
directory, it will not usually appear with a list command. This is an important file and should not be
deleted or changed. Subversion uses this directory to manage the working copy and tampering
with it will cause errors and instability. If the directory is accidentally deleted the best way to fix
it is to delete the entire containing directory (a normal system delete, not svn delete) and
run svn update from a parent directory. The deleted directory will be recreated, including the
missing or changed .svn directory. This can cause a loss of data.

Although the working copy is now ready to edit, keep in mind that whenever the file tree changes,
these changes must be sent to the repository as well. This is done with a variety of commands.

svn add filename
Newly created files or directories, including the files they contain, are flagged to be added to the
repository. The next commit will add them to the repository where they can be accessed and
viewed by all.

svn delete filename
Files or directories, including the files they contain, are flagged to be deleted from the repository.
The next commit will remove them. However, the deleted files can still be accessed in previous
revisions through SVN.

Chapter 3. Collaborating

30

svn copy filename1 filename2
Creates a new file, filename2, which is an exact copy of filename1. It then schedules
filename2 for addition on the next commit. Note that svn copy does not create intermediate
directories unless the --parents option is passed.

svn move filename1 filename2
This is the same as svn copy filename1 filename2 followed by svn delete filename1.
A copy is made, and then filename1 is scheduled to be deleted on the next commit. Note that
svn move does not create intermediate directories unless the --parents option is passed.

svn mkdir directory
This command both creates the specified directory and then schedules it to be added to the
repository on the next commit.

Sometimes it is impractical to check out an entire working copy in order to do some simple changes. In
these circumstances it is possible to perform svn mkdir, svn copy, svn move, and svn delete
directly on the repository URL. The downside of using this is that with a working copy the changes can
be checked before publishing them to ensure that is actually the way they were intended.

3.2.5. Committing changes
Once the edits are complete and have been verified to work correctly, it is time to publish them so
others can view the changes.

For each file in the working copy, SVN records two pieces of information:

• The file's working revision that the current working file is based on

• A timestamp recording when the local copy was last updated by the repository.

Using this information, SVN sorts the working copy on the local system into four categories:

Unchanged; current
The file in the working directory is unchanged and matches the copy in the repository, meaning no
changes have been committed since the initial check out. Both svn commit and svn update
will do nothing.

Locally changed; current
The file in the working directory has been edited but has not yet been committed to the repository,
and the repository version has not been changed since the initial checkout. Running svn commit
will update the repository with the changes in the working directory; running svn update will do
nothing.

Unchanged; out of date
The file in the working directory has not been edited, but the version in the repository has,
meaning that the working copy is now out of date. Running svn commit will do nothing; running
svn update will merge the changes in the repository with the local working copy.

Locally changed; out of date
The file in both the working directory and the repository has been changed. If svn commit is run
first, an 'out-of-date' error will occur. Update the file first. Running svn update will attempt to
merge the changes in the repository with those on the working copy. If there are conflicts SVN will
provide options for the user to decide on the best course of action to resolve them.

Running svn status will display all of the files in the working tree that do not match the current
version in the repository, coded by a letter.

Committing changes

31

? item
The file is not recognized by SVN; that is it is in the working copy, but has not yet been added to
the repository, or been scheduled for any action.

A item
The file is scheduled for addition to the repository and will be added on the next commit.

C item
The file is in conflict with a change made on the repository. This means that someone has edited
and committed a change to the same section of the file currently changed in the working copy,
and SVN does not know which is 'correct'. This conflict must be resolved before the changes are
committed.

D item
The file is scheduled for deletion on the next commit.

M item
The file has been modified and the changes will be updated on the next commit.

If the --verbose (-v) is passed with svn status, the status of every item in the working copy will
be displayed, even those that have not been changed. For example:

$ svn status -v
M 44 23 sally README
 44 30 sally INSTALL
M 44 20 harry bar.c
 44 18 ira stuff
 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
 44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
 44 36 harry stuff/things/gloo.c

Along with the letter codes, this shows the working revision, the revision in which the item was last
changed, who changed it, and the item changed respectively .

It can also be useful to see which items have been modified in the repository since the last time a
checkout was performed. This is done by passing the --show-updates (-u) with svn status. An
asterisk (*) will be displayed between the letter status and the working revision number on any files
that will be updated when performing an svn commit.

Another way to view changes made is with the svn diff command. This displays changes in a
unified diff format, describing changes as 'snippets' of a file's content where each line is prefixed with a
character: a space for no change, a minus sign (-) for a line removed, and a plus sign (+) for an added
line.

Occasionally a conflict will occur. SVN provides the three most common responses (postpone, diff-full,
and edit) and a fourth option to list all the options and what they each do. The options available are:

(p) postpone
Mark the conflict to be resolved later.

(df) diff-full
Display the differences between the base revision and the conflicted file in unified diff format.

(e) edit
Change merged file in an editor.

Chapter 3. Collaborating

32

(r) resolved
Accept the merged version of the file.

(mf) mine-full
Accept my version of the entire file, ignoring the most recent changes in the repository.

(tf) theirs-full
Accept their version of the entire file, ignoring the most recent changes in the local working copy.

(l) launch
Launch an external tool to resolve conflict (this requires set up of the chosen external tool
beforehand).

(h) help
Displays the list of options as detailed here.

Finally, provided the project has been changed locally and any conflicts have been resolved, the
changes can be successfully committed with the svn commit command, appending the option -m:

$ svn commit filename -m "Fixed a typo in filename"
Sending filename
Transmitting file data .
Committed revision 57.
$

The most updated version is now available for anyone with access to the repository to update their
versions to the newest copy.

3.2.6. SVN Documentation
The command svn --help provides information on the available commands to be used in
conjunction with SVN and svn subcommand --help provides more detailed information on the
specified subcommand.

The official SVN book is available online at http://svnbook.red-bean.com/

The official SVN website is located at http://subversion.apache.org/

3.3. Git
Git is a version control system that was not written to improve on CVS and SVN but rather in
retaliation to them. Git was created with four design points in mind:

1. Not like CVS and SVN. Torvalds, the creator of Git, does not like these programs and wanted to
make something that was unlike them.

2. Support a BitKeeper-like workflow. The way a project is managed ideally follows the same process
as BitKeeper, while keeping its own design and not becoming a BitKeeper clone.

3. Strong safeguards against accidental or malicious corruption.

4. Very high performance.

To accomplish this, Git approaches how it handles data differently to its predecessors.

This section will go through the most common processes in a day's use of Git.

http://svnbook.red-bean.com/
http://subversion.apache.org/

Git

33

Previously the version controls covered (CVS and SVN) treated data as changes to a base version
of each file. Instead, Git treats its data changes as separate snapshots of what the files look like and
stores a reference to that file (though if the file remains unchanged, Git will simply store a link to the
previous identical version rather than copy another file). This creates a kind of new mini-filesystem.
The image below compares these concepts visually:

Figure 3.1. Git version control

Git is particularly fast, something that is aided by not needing to constantly connect to a remote
repository. The snapshot nature of Git and how all versions are stored on the local file system means
that nearly everything can be done without connecting to any kind of network and the history of the
project is available locally.

Chapter 3. Collaborating

34

To fulfill Torvalds' integrity requirement, everything in Git is check-summed before being stored
and then referred to by that check-sum. This means the contents cannot be changed without Git's
knowledge and information cannot be lost in transit or corrupted. A SHA-1 hash mechanism (a forty-
character hexadecimal sting) is used for this.

In addition, there is very little in Git that cannot be undone. This is aided by the three main states a file
can reside in.

Committed
Data is safely stored on the local database, and unchanged.

Modified
The file has been changed but not yet committed to the database.

Staged
A modified file has been marked to be committed in its current version.

3.3.1. Installation
Git can be installed either from source or from the console. If the user is confident enough then the
recommendation is to install from source, as the binary installers don't always have the most up-to-
date version available.

To install Git from source code, use the following procedure:

Procedure 3.2. To install Git from source code
1. Install the libraries Git depends on: curl, zlib, openssl, expat, and libiconv.

$ sudo yum install curl-devel expat-devel gettext-devel \
openssl-devel zlib-devel gcc

2. Download the latest snapshot from the Git web site, located here: http://git-scm.com/download.

3. Compile and install.

$ tar -zxf git-1.7.6.1.tar.gz
$ cd git-1.7.2.2
$ make prefix=/usr/local
$ sudo make prefix=/usr/local install

4. It is now possible to get updates for Git, from Git.

$ git clone git://git.kernel.org/pub/scm/git/git.git

Installing Git with a binary installer from the console is as simple as using the following command.

$ yum install git

3.3.2. Initial Setup
After installing there are a few steps to personalize Git and get it ready for use. These only need to be
set up once and Git will remember the settings, however if they need to be changed in the future just
run the commands again.

http://git-scm.com/download

Git repository

35

These changes are made by altering variables stored in three different places:

1. The /etc/gitconfig file contains variables for every user on the system and all their
repositories. It holds the base settings and passing --system to git config sets it to read and
write from this file.

2. The ~/.gitconfig file is specific to the user. Passing --global tells Git to read and write to
this file, overriding the settings made in the first point.

3. The config file in the Git directory (.git/config) of the repository currently being used. This is
specific to this repository only and override the settings in both the first and the second point.

Before the first commit, enter some details into Git by supplying the name and email address that will
appear with change.

For example, if the user's name is John Q. Smith, use the following commands:

$ git config --global user.name "John Smith"
$ git config --global user.email "jsmith@example.com"

As explained above, by passing the --global option this only needs to be set once, but can be
overridden for specific repositories.

By default, whenever an editor is needed, Git launches Vi or Vim. However, if this is not preferred it is
possible to change this to another editor. To do so, use the following command:

git config --global core.editor EditorName

The diff tool is often used to view the changes in various files, useful for double checking things before
committing them. Git currently accepts the following meld diff tool.

Use the following command to set the preferred diff tool:

$ git config --global merge.tool DiffTool

Finally, it is useful to check these settings to ensure they are correct. To do this run:

$ git config --list
user.name=John Smith
user.email=jsmith@example.com

If there are different settings in different files, Git will list them all, with the last value for the active
one. It is also possible for Git to check the specific response to a variable by using the git config
{key} command. For example:

$ git config user.name
John Smith

3.3.3. Git repository
The Git repository is where the metadata and object database is stored for a project. This is where the
project is pulled from in order to get a local clone of a repository on a local system.

Chapter 3. Collaborating

36

There are two options for obtaining a Git repository. The first is for when a directory already exists and
there is the need to initialize a Git repository. The second is cloning a repository that already exists.

To clone an existing repository (for example, to contribute to) then run the following command:

$ git clone git://location/of/git/repository.git

Note that the command is git clone as opposed to git checkout as it might be for a version
control system similar to CVS and SVN. This is because Git receives a copy of every file in the
project's entire history, as opposed to only the most recent files as with other version control systems.

The above command creates a directory where the name is the last component of the URL, but
with any .git suffix removed. However, the clone command can use any other name simply by
appending the desired directory name to the end:

$ git clone git://location/of/git/repository.git my_git_repo

Finally, even though this command uses the git:// protocol, it is also possible to use http:// or
https:// as appropriate.

To create a new Git repository ready to create data for, first navigate to the project's directory and type:

$ git init

This creates a skeleton of a Git repository, containing all the necessary files ready for content to be
created and added.

Now that either a skeleton Git repository is set up or a local clone copied and ready on the local
system it is time to look at the rest of the Git cycle.

Untracked files

37

Figure 3.2. Git life cycle

This image shows how the Git cycle works and will be explained in further detail in the following
sections.

3.3.4. Untracked files
Untracked files are those that Git does not recognize. This will occur if a file is newly created or for all
files in a new project. The status of a file can be shown with the git status command. For a newly
started project there will be files in the untracked status.

Chapter 3. Collaborating

38

$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
filename
nothing added to commit but untracked files present (use "git add" to track)

As the status helpfully says, the files will not be included unless Git is told to include them with the git
add command.

$ git add filename

The command git add filename will add that specific file first to the unmodified section. Use git
add . to add all files in the current directory (including any sub-directories), or for example git add
*.[ch] to add all .c and .h files in the current directory.

3.3.5. Unmodified files
The unmodified status is where those files that have not changed are kept. Git is aware of them and
is tracking them so that when an edit is made they are transferred to the modified status. Also, after a
commit, the files are returned to this state.

It is also possible to remove files from this state to stop Git from tracking them. This will remove them
locally as well. To do so run:

$ git rm filename
rm 'filename'
$ git status
On branch master
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: filename
#

Removing a file

Note, that if a file is unmodified, git rm filename will remove the entire file. It is only when a
file has uncommitted changes that git rm filename will give a diagnostic and not remove it.
To remove a file despite the uncommitted changes, use the --force or -f option.

To stop Git from tracking a file without removing it locally, use the --cached option, then commit
the removal.

$ git rm --cached filename
$ git commit -m'remove file message'

Modified Status

39

3.3.6. Modified Status
A copy is on the local system ready to edit. As soon as any changes are made Git recognizes the file
as modified and moves it to the modified status. Running git status will show this:

$ git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: filename
#

The file has been changed but as of yet it will not be committed (after all, more changes can still be
made and it may not be ready to be committed). As the output helpfully points out, using the git add
filename command again will push the modified file to the staged status, ready to be committed.

$ git add filename
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: filename
#

This process can become a little more complex if a staged file needs to have one final edit before it
is committed as it will appear in both the staged status and the modified status. If this occurs then a
status will look like this:

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: filename1
#
Changed but not updated:
(use "git add <file>..." to unstage)
#
modified: filename1
#

This is where the Git snapshots are highlighted; there is a snapshot of a file ready to be committed
and another snapshot in the modified status. If a commit is run then only the snapshot of the staged
status will be committed, not the corrected version. Running git add again will resolve this and the
modified snapshot of the file will merge with the snapshot on the staged status, ready to commit the
new changes.

3.3.7. Staged files
The staged status is where the snapshot of all files that are ready to be committed reside. All files in
this status will be committed when the command is given.

Chapter 3. Collaborating

40

3.3.7.1. Viewing changes
Before committing the snapshots on the staged status, it is a good idea to check the changes made to
ensure that they are acceptable. This is where the command git diff comes in.

$ git diff
diff --git a/filename b/filename
index 3cb747f..da65585 100644
--- a/filename
+++ b/filename
@@ -36,6 +36,10 @@ def main
 @commit.parents[0].parents[0].parents[0]
 end

+ some code
+ some more code
+ a comment
+ another change
- a mistake

Running the git diff command with no parameters, as above, compares the working directory to
what is in the staged status, displaying changes made but not yet committed.

It is also possible to compare the changes between the staged status and what the last commit was by
using the --cached option.

$ git diff --cached
diff --git a/filename b/filename
new file mode 100644
index 0000000..03902a1
-- /dev/null
+++ b/filename
@@ -0,0 +1,5 @@
+file
+ by name1, name2
+ http://path/to/file
+
+ added information to file

Alternate command

In versions 1.6.1 and later of Git it is also possible to use the --staged option instead of --
cached.

3.3.7.2. Committing changes
After checking that all the staged files are correct and ready, it is time to commit the changes.

$ git commit

The above command will launch the chosen editor set in the initial setup, or if this was not set up it
defaults to Vim.

Remote repositories

41

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: filename2
modified: filename1
~
~
~
".git/COMMIT_EDITMSG" 10L, 283C

As can be seen, the last status report is also included in the editor, though because of the hash (#) it
will not be visible in the actual commit log. For more information on what is being committed, pass the
-v option with git commit. The commit message can be entered here, or it can be entered in the
command line with the -m option:

$ git commit -m "commit message"
[master]: created 4156dc4f: "commit message"
2 files changed, 3 insertions(+), 1 deletions (-)
create mode 100644 filename

The commit message provides some information: the branch committed to (master in this case), what
SHA-1 checksum the commit has (4156dc4f), how many files were changed, and some statistics
about what was changed within them.

Skipping the staging status

It is possible to skip the staging area which can be useful, but holds the risk of committing
something that was not ready to be committed yet. This is done by passing the -a option with
git commit.

$ git status
On branch master
#
Changed but not updated:
#
modified: filename
#
$ git commit -a -m 'commit message'
[master 16e15c7] commit message
1 files changed, 5 insertions(+), 2 deletions(-)

3.3.8. Remote repositories
In order to share a project with the world, it needs to be pushed to a remote repository, hosted on a
network or on the internet. To be able to push to a remote directory, first one must be made. To do so,
run the command git add [shortname] [URL]

$ git remote add shortname git://path/to/new/repo

The shortname can now be used in lieu of the URL when referring to the remote repository.

Chapter 3. Collaborating

42

Now a repository is added it is possible to print a list of remote repositories. This is done with the git
remote command, passing the -v option to display the associated URL as well as just the shortname
if desired. Even without adding a new remote repository, if the project was cloned it will list at least the
repository it was cloned from.

$ git remote -v
repo-name git://path/to/new/remote-repository
origin git://path/to/original/remote-repository

If even this is not enough information running the git show [remote-repository] will list the
URL as well as the branches Git is tracking for this particular repository.

In order to fetch data from remote repositories (for example, if someone working on the project has
pushed new information to them), use the following command:

$ git fetch [remote-name]

This pulls down any and all information from this particular remote host that differs from what is on the
local copy. Alternatively, running git pull will do the same from the repository the original copy was
cloned from.

In order to share a project with a wider audience it needs to be pushed to a remote repository.

$ git push remote-repository branch-name

This command pushes the specified branch to the specified repository, but only if the user has write
access. In the case of a conflict, pull the new work down first to incorporate it into the local version
before pushing it to the remote repository.

Finally to rename a repository, run the git remote rename original-name new-name. Keep in
mind that this will also change the remote branch names as well. Removing a repository is similar: git
remote rm remote-name.

3.3.9. Commit logs
After working with a repository for some time, making several changes and commits, a need may arise
to view the logs of these changes. This is done with the git log command. When this is run with
no arguments, it lists each commit in reverse chronological order, presenting the time and date of the
commit, the SHA-1 checksum, the author's name and email, and the commit message.

It is possible to include the diff report in these logs, and limit the output by a set number of entries. For
example, running git log -p -2 will list the normal log information in addition to the diff reports for
the two most recent entries.

To include some statistics at the end of each commit entry, use the git log --stat. This command
will include a list of modified files, how many files were changed, and how many lines were added and
removed, followed by a summary of this information, after the commit message.

Along with these useful options, there are a number of others which can be passed with this
command:

--shortstat
Similar to the --stat option, but this displays only the changed, insertions, and deletions in a
commit.

Fixing problems

43

--name-only
Lists only the files modified after the commit information.

--name-status
Lists the files modified along with the changed, insertions, and deletions.

--abbrev-commit
Only displays the first few characters of the SHA-1 checksum, instead of all forty.

--relative-date
Displays the date relative to the current date. For example, instead of reading Tue July
10:53:11 2011 -0700, it will print 2 weeks ago.

--graph Display
Prints an ASCII graph of the branch and merge history beside the log output.

--since=[date]
Prints the log since a specified date; that is, everything after the date. The date can be entered in
a variety of different formats, be it a specific date (2010-08-23, for example) or a relative date ("1
year 3 days 4 minutes ago", for example).

--until=[date]
Similar to the --since option, this will print the log up until the specified date; that is, everything
before the date.

--author name
Lists only those commits with the specified name in the author field.

--committer name
Lists only those commits with the specified name in the committer field.

3.3.10. Fixing problems
There may come a time when mistakes are made and something needs to be removed or undone.
This section will cover some of the ways these errors can be fixed.

Data loss

This is one of the few areas in Git where data can be lost forever. If an undo is performed and
then discovered it should not have been, it is highly likely that it is now impossible to recover the
lost data. Proceed with caution.

This occurs most often when a commit is pushed too early, committing something that is not yet ready,
or making a mistake in the commit message. This can be fixed by committing over the top of the latest
commit using the --amend option.

$ git commit --amend

If the files on the staged status are different from those in the latest commit, the commit will run
normally except it will override the original. If the files are the same, then the option will be provided to
change the commit message, again, overriding the previous commit.

Chapter 3. Collaborating

44

It is also possible to unstage a staged file. This can sometimes be required if git add * was
used when the intention was to have two (or more) separate commits. The git status command
provides a hint on how to do this as well:

(use "git reset HEAD <file>..." to unstage)

So to follow its advice, use the command git reset HEAD filename and the file is now reverted
to the modified status rather than the staged status.

To revert a file back to what it looked like at the last commit, the git status command comes to the
rescue again in the unstaged status:

(use "git checkout -- <file>..." to discard changes in working directory)

Following these instructions with the git checkout -- filename reverts the file. To reiterate the
above warning however, this will cause data loss; only use it when it is certain this version of the file is
no longer wanted.

3.3.11. Git documentation
The main Git man page can be viewed with man git. This also provides the commands to access
other man pages such as gittutorial(7), Everyday Git[1], and gitglossary(7).

The official Git homepage can be accessed at http://git-scm.com/ where more documentation is
available and can be downloaded.

The following is a list of websites containing more detailed Git information.

• A useful book containing both basic and more advanced Git instructions can be found at http://
progit.org/book/.

• A Red Hat Magazine article, Shipping quality code with Git: http://magazine.redhat.com/2008/05/02/
shipping-quality-code-with-git/.

• Using Git without feeling stupid - part 1: http://smalltalk.gnu.org/blog/bonzinip/using-git-without-
feeling-stupid-part-1.

Using Git without feeling stupid - part 2: http://smalltalk.gnu.org/blog/bonzinip/using-git-without-
feeling-stupid-part-2.

• A description on how to prepare or email patches: http://logcheck.org/git.html.

• A Git cheat sheet: http://cheat.errtheblog.com/s/git.

• A blog by Tim Waugh, How I use Git: http://cyberelk.net/tim/2009/02/04/how-i-use-git/.

• Handling and avoiding conflicts in Git: http://weblog.masukomi.org/2008/07/12/handling-and-
avoiding-conflicts-in-git.

• Branching and merging with Git: http://lwn.net/Articles/210045/.

• Getting the most out of Git in GNOME: http://live.gnome.org/Git/Developers.

• Integrating vim with Git: http://vim.runpaint.org/extending/integrating-vim-with-git/.

• Git Reference: http://gitref.org/.

• A successful Git branching model: http://nvie.com/posts/a-successful-git-branching-model/.

http://git-scm.com/
http://progit.org/book/
http://progit.org/book/
http://magazine.redhat.com/2008/05/02/shipping-quality-code-with-git/
http://magazine.redhat.com/2008/05/02/shipping-quality-code-with-git/
http://smalltalk.gnu.org/blog/bonzinip/using-git-without-feeling-stupid-part-1
http://smalltalk.gnu.org/blog/bonzinip/using-git-without-feeling-stupid-part-1
http://smalltalk.gnu.org/blog/bonzinip/using-git-without-feeling-stupid-part-2
http://smalltalk.gnu.org/blog/bonzinip/using-git-without-feeling-stupid-part-2
http://logcheck.org/git.html
http://cheat.errtheblog.com/s/git
http://cyberelk.net/tim/2009/02/04/how-i-use-git/
http://weblog.masukomi.org/2008/07/12/handling-and-avoiding-conflicts-in-git
http://weblog.masukomi.org/2008/07/12/handling-and-avoiding-conflicts-in-git
http://lwn.net/Articles/210045/
http://live.gnome.org/Git/Developers
http://vim.runpaint.org/extending/integrating-vim-with-git/
http://gitref.org/
http://nvie.com/posts/a-successful-git-branching-model/

Git documentation

45

• A quick introduction, Git for the lazy: http://www.spheredev.org/wiki/Git_for_the_lazy.

• Git tricks, tips, and workflows: http://nuclearsquid.com/writings/git-tricks-tips-workflows/.

http://www.spheredev.org/wiki/Git_for_the_lazy
http://nuclearsquid.com/writings/git-tricks-tips-workflows/

46

Chapter 4.

47

Libraries and Runtime Support
Red Hat Enterprise Linux 6 supports the development of custom applications in a wide variety of
programming languages using proven, industrial-strength tools. This chapter describes the runtime
support libraries provided in Red Hat Enterprise Linux 6.

4.1. Version Information
The following table compares the version information for runtime support packages in supported
programming languages between Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 5, and Red
Hat Enterprise Linux 4.

This is not an exhaustive list. Instead, this is a survey of standard language runtimes, and key
dependencies for software developed on Red Hat Enterprise Linux 6.

Table 4.1. Language and Runtime Library Versions

Package Name Red Hat Enterprise 6 Red Hat Enterprise 5 Red Hat Enterprise 4

glibc 2.12 2.5 2.3

libstdc++ 4.4 4.1 3.4

boost 1.41 1.33 1.32

java 1.5 (IBM), 1.6 (IBM,
OpenJDK, Oracle
Java)

1.4, 1.5, and 1.6 1.4

python 2.6 2.4 2.3

php 5.3 5.1 4.3

ruby 1.8 1.8 1.8

httpd 2.2 2.2 2.0

postgresql 8.4 8.1 7.4

mysql 5.1 5.0 4.1

nss 3.12 3.12 3.12

openssl 1.0.0 0.9.8e 0.9.7a

libX11 1.3 1.0

firefox 3.6 3.6 3.6

kdebase 4.3 3.5 3.3

gtk2 2.18 2.10 2.04

compat-glibc package

The compat-glibc RPM is included with Red Hat Enterprise Linux 6, but it is not a runtime
package and therefore not needed for running anything. It is solely a development package,
containing header files and dummy libraries for linking. This allows compiling and linking
packages to run in older Red Hat Enterprise Linux versions (using compat-gcc-* against those
headers and libraries). Running rpm -qpi compat-glibc-* will provide some information on
how to use this package.

Chapter 4. Libraries and Runtime Support

48

4.2. Compatibility

Compatibility specifies the portability of binary objects and source code across different instances of
a computer operating environment. Officially, Red Hat supports current release and two consecutive
prior versions. This means that applications built on Red Hat Enterprise Linux 4 and Red Hat
Enterprise Linux 5 will continue to run on Red Hat Enterprise Linux 6 as long as they comply with Red
Hat guidelines (using the symbols that have been white-listed, for example).

Red Hat understands that as an enterprise platform, customers rely on long-term deployment of their
applications. For this reason, applications built against C/C++ libraries with the help of compatibility
libraries continue to be supported for seven years, or ten years with an extended subscription.

For further information regarding this, refer to Red Hat Enterprise Linux supported releases accessed
at https://access.redhat.com/support/policy/updates/errata/ and the general Red Hat Enterprise Linux
compatibility policy, accessed at https://www.redhat.com/f/pdf/rhel/RHEL6_App_Compatibility_WP.pdf.

There are two types of compatibility:

Source Compatibility
Source compatibility specifies that code will compile and execute in a consistent and predictable
way across different instances of the operating environment. This type of compatibility is defined
by conformance with specified Application Programming Interfaces (APIs).

Binary Compatibility
Binary Compatibility specifies that compiled binaries in the form of executables and Dynamic
Shared Objects (DSOs) will run correctly across different instances of the operating environment.
This type of compatibility is defined by conformance with specified Application Binary Interfaces
(ABIs).

4.2.1. API Compatibility
Source compatibility enables a body of application source code to be compiled and operate correctly
on multiple instances of an operating environment, across one or more hardware architectures, as
long as the source code is compiled individually for each specific hardware architecture.

Source compatibility is defined by an Application Programming Interface (API), which is a set of
programming interfaces and data structures provided to application developers. The programming
syntax of APIs in the C programming language are defined in header files. These header files
specify data types and programmatic functions. They are available to programmers for use in their
applications, and are implemented by the operating system or libraries. The syntax of APIs are
enforced at compile time, or when the application source code is compiled to produce executable
binary objectcode.

APIs are classified as:

• De facto standards not formally specified but implied by a particular implementation.

• De jure standards formally specified in standards documentation.

In all cases, application developers should seek to ensure that any behavior they depend on is
described in formal API documentation, so as to avoid introducing dependencies on unspecified
implementation specific semantics or even introducing dependencies on bugs in a particular
implementation of an API. For example, new releases of the GNU C library are not guaranteed to be
compatible with older releases if the old behavior violated a specification.

Red Hat Enterprise Linux by and large seeks to implement source compatibility with a variety of
de jure industry standards developed for Unix operating environments. While Red Hat Enterprise

https://access.redhat.com/support/policy/updates/errata/

ABI Compatibility

49

Linux does not fully conform to all aspects of these standards, the standards documents do provide
a defined set of interfaces, and many components of Red Hat Enterprise Linux track compliance with
them (particularly glibc, the GNU C Library, and gcc, the GNU C/C++/Java/Fortran Compiler). There
are and will be certain aspects of the standards which are not implemented as required on Linux.

A key set of standards that Red Hat seeks to conform with are those defined by the Austin Common
Standards Revision Group (“The Austin Group”).

The Austin Group is a working group formed in 1998 with the aim of unifying earlier Unix
standardization efforts including ISO/IEC 99451 and 99452, IEEE Standards 1003.1 and 1003.2
(POSIX), and The Open Group's Single Unix Specification. The goal of The Austin Group is to unify
the POSIX, ISO, and SUS standards into a single set of consistent standards. The Austin Group
includes members from The Open Group, ISO, IEEE, major Unix vendors, and the open source
community. The combined standards issued by The Austin Group carry both the IEEE POSIX
designation and The Open Group's Technical Standard designation, and in the future the ISO/IEC
designation. More information on The Austin Group is available at http://www.opengroup.com/austin.

Red Hat Enterprise Linux characterizes API compatibility four ways, with the most compatible APIs
scored with the smallest number in the following list:

1. No changes. Consumer should see no visible changes.

2. Additions only. New structures, fields, header files, and exported interfaces may be added.
Otherwise no visible changes allowed.

3. Additions and Deprecations allowed. Structs, headers, fields, exported interfaces may be marked
as deprecated or if previously marked as deprecated the headers, fields, exported interfaces, etc
may be removed. Deprecated items may still exist as part of a compatibility layer in versioned
libraries for ABI compatibility purposes, but are no longer available in APIs.

4. Anything goes. No guarantees whatsoever are made.

In the following sections, these API classification levels will be detailed for select components of Red
Hat Enterprise Linux.

4.2.2. ABI Compatibility
Binary compatibility enables a single compiled binary to operate correctly on multiple instances of
an operating environment that share a common hardware architecture (whether that architecture
support is implemented in native hardware or a virtualization layer), but a different underlying software
architecture.

Binary compatibility is defined by an Application Binary Interface (ABI). The ABI is a set of runtime
conventions adhered to by all tools which deal with a compiled binary representation of a program.
Examples of such tools include compilers, linkers, runtime libraries, and the operating system itself.
The ABI includes not only the binary file formats, but also the semantics of library functions which are
used by applications.

Similar to the case of source compatibility, binary compatibility ABIs can be classified into the
following:

• De facto standards, which are not formally specified but implied by a particular implementation.

• De jure standards, which are formally specified in standards documentation.

Red Hat Enterprise Linux by and large seeks to implement binary compatibility with a de jure industry
standard developed for GNU/Linux operating environments, the Linux Standard Base (LSB). Red Hat
Enterprise Linux 6 implements LSB version 4.

Chapter 4. Libraries and Runtime Support

50

Red Hat Enterprise Linux characterizes ABI compatibility four ways, with the most compatible ABIs
scored with the smallest number in the following list:

1. No changes made. Consumer should see no changes.

2. Versioned additions only, no removals. New structures, fields, header files, and exported
interfaces may be added as long as additional techniques are used to effectively version any new
symbols. Applicable mechanisms for versioning external symbols include the use of compiler
visibility support (via pragma, annotation, or suitable flag), use of language-specific features, or
use of external link maps. Many of these techniques can be combined.

3. Incompatible, but a separate compatibility library is packaged so that previously linked binaries
can run without modification. Use is mutually exclusive: either the compatibility package is used, or
the current package is used.

4. Anything goes. Incompatible, with no recourse.

In the following sections, these ABI classification levels will be detailed for select components of Red
Hat Enterprise Linux.

4.2.3. Policy

4.2.3.1. Compatibility Within A Major Release
One of the core goals of the Red Hat Enterprise Linux family of products is to provide a stable,
consistent runtime environment for custom application development. To support this goal, Red
Hat seeks to preserve application binary compatibility, configuration file compatibility, and data file
compatibility for all Red Hat Enterprise Linux 6 package updates issued within a major release. For
example, a package update from Red Hat Enterprise Linux 6 Update 1 to Red Hat Enterprise Linux
Update 2, or a package update that fixes an identified security vulnerability, should not break the
functionality of deployed applications as long as they adhere to standard Application Binary Interfaces
(ABIs) as previously discussed.

4.2.3.2. Compatibility Between Major Releases
Red Hat Enterprise Linux also provides a level of compatibility across major releases, although it is
less comprehensive than that provided within a major release. With the qualifications given below,
Red Hat Enterprise Linux 6 provides runtime compatibility support for applications built for Red Hat
Enterprise Linux 5 and Red Hat Enterprise Linux 4.

For example, applications that are are compiled with header files and linked to a particular version
of glibc, the GNU C Library, are intended to continue to work with later versions of glibc. For the
case of glibc, this is accomplished by providing versioned symbols, whose syntax and semantics are
preserved in subsequent releases of the library even if a new, otherwise incompatible implementation
is added. For other core system components, such as all 2.x releases of the GTK+ toolkit, backwards
compatibility is ensured simply by limiting changes, which preserve the syntax and semantics of the
defined APIs. In many cases, multiple versions of a particular library may be installed on a single
system at the same time to support different versions of an API. An example is the inclusion of both
Berkeley Database (db) version 4.7.25 and a compatibility version 4.3.29 in Red Hat Enterprise Linux
6, each with its own set of headers and libraries.

Red Hat provides compatibility libraries for a set of core libraries. However, Red Hat does not
guarantee compatibility across major releases of the distribution for dynamically linked libraries outside
of the core library set unless versions of the Dynamic Shared Objects (DSOs) the application expects
are provided (either as part of the application package or separate downloads). To ensure compatibility

Static Linking

51

across major releases, application developers are encouraged to limit their dynamically linked library
dependencies to those in the core library set, or to provide an independent version of the required
non core libraries packaged with their application (which in turn depend only on core libraries). As a
rule, Red Hat recommends against statically linking libraries into applications. For more information on
why we recommend against static linking, see Section 4.2.4, “Static Linking”

Red Hat also reserves the right to remove particular packages between major releases. Red Hat
provides a list of deprecated packages that may be removed in future versions of the product in the
Release Notes for each major release. Application developers are advised to avoid using libraries on
the deprecated list. Red Hat reserves the right to replace specific package implementations in future
major releases with alternative packages that implement similar functionality.

Red Hat does not guarantee compatibility of configuration file formats or data file formats between
major releases of the distribution, although individual software packages may in fact provide file
migration or compatibility support.

4.2.3.3. Building for forward compatibility across releases
Ideally, rebuild and repackage applications for each major release. This allows full advantage of new
optimizations in the compiler, as well as new features available in the latest tools, to be taken.

However, there are times when it is useful to build one set of binaries that can be deployed on multiple
major releases at once. This is especially useful with old code bases that are not compliant to the
latest revision of the language standards available in more recent Red Hat Enterprise Linux releases.

Therefore it is advised to refer to the Red Hat Enterprise Linux 6 Application Compatibility
Specification1 for guidance. This document outlines Red Hat policy and recommendations regarding
backwards compatibility, particularly for specific packages.

For example, if you would like to build a package that can be deployed in RHEL4, RHEL5, and RHEL6
with one set of binaries, here are some general guidelines:

• The main point to keep in mind is that you must build on the lowest common denominator. In this
case, RHEL4.

• Compatibility libraries must be available in subsequent releases (RHEL5 and RHEL6 in this case).
For more details on compatibility libraries, see Section 5.1.4, “Backwards Compatibility Packages”.

Please note, that Red Hat only guarantees this forward compatibility between releases for the past 2
Enterprise Linux releases. That is, building on RHEL4 is guaranteed to work on RHEL5 and RHEL6,
provided you have the appropriate compatibility libraries on the latest two releases. Building on RHEL5
is guaranteed to work on RHEL6 and the next release thereafter.

4.2.4. Static Linking
Static linking is emphatically discouraged for all Red Hat Enterprise Linux releases. Static linking
causes far more problems than it solves, and should be avoided at all costs.

The main drawback of static linking is that it is only guaranteed to work on the system on which it
was built, and even then only until the next release of glibc or libstdc++ (in the case of C++). There is
no forward or backward compatibility with a static build. Furthermore, any security fixes (or general-
purpose fixes) in subsequent updates to the libraries will not be available unless the affected statically
linked executables are re-linked.

1 https://www.redhat.com/f/pdf/rhel/RHEL6_App_Compatibility_WP.pdf

Chapter 4. Libraries and Runtime Support

52

A few more reasons why static linking should be avoided are:

• Larger memory footprint.

• Slower application startup time.

• Reduced glibc features with static linking.

• Security measures like load address randomization cannot be used.

• Dynamic loading of shared objects outside of glibc is not supported.

For additional reasons to avoid static linking, see: Static Linking Considered Harmful2.

4.2.5. Core Libraries
Red Hat Enterprise Linux maintains a core set of libraries where the APIs and ABIs are preserved for
each architecture across major releases (eg between Red Hat Enterprise Linux 5 and 6). This will help
developers produce software that is compatible with a variety of Red Hat Enterprise Linux versions.
Limit applications to linking against this set of libraries to take advantage of this feature.

The list of core libraries maintained by Red Hat Enterprise Linux includes the following. Each
package is annotated with a compatibility number for ABI and ABI. The API numbers correspond to
characterizations described in Section 4.2.1, “API Compatibility”. The ABI numbers correspond to
characterizations described in Section 4.2.2, “ABI Compatibility”.

Table 4.2. Core Library Compatibility

Package
Name

Files Previous RHEL Version Notes

5 4

API ABI API ABI

glibc libc, libm,
libdl, libutil,
libcrypt

2 2 3 2 See notes
for RHEL 2
and 3.

libstdc++ libstdc++ 2 2 3 2 See notes
for RHEL 3.

zlib libz 1 ? 1 ?

ncurses-libs libncurses 1 ? 1 ?

nss libnss3,
libssl3

? ?

gtk2 libgdk-
x11-2.0,
libgdk_pixbuf-2.0,
libgtk-
x11-2.0

2 ? ?

glib2 libglib-2.0,
libgmodule-2.0,
libgthread-2.0,

2 ? ?

2 http://www.akkadia.org/drepper/no_static_linking.html

http://www.akkadia.org/drepper/no_static_linking.html
http://www.akkadia.org/drepper/no_static_linking.html

Non-Core Libraries

53

If an application can not limit itself to the interfaces of these core libraries, then to ensure compatibility
across major releases, the application should bundle the additional required libraries as part of the
application itself. In that case, the bundled libraries must themselves use only the interfaces provided
by the core libraries.

4.2.6. Non-Core Libraries
Red Hat Enterprise Linux also includes a wide range of libraries whose APIs and ABIs are not
guaranteed to be preserved between major releases. Compatibility of these libraries is, however,
provided within a major release of the distribution. Applications are free to use these noncore libraries,
but to ensure compatibility across major releases, application vendors should provide their own copies
of these noncore libraries, which in turn should depend only on the core libraries listed in the previous
section.

Each package is annotated with a compatibility number for API and ABI. The API numbers correspond
to characterizations described in Section 4.2.1, “API Compatibility”. The ABI numbers correspond to
characterizations described in Section 4.2.2, “ABI Compatibility”.

Table 4.3. Non-Core Library Compatibility

Previous RHEL Version

5 4

Package
Name

Files

API ABI API ABI

boost libboost_filesystem,
libboost_threads

4 4 4 4

openssl libssl, libcrypto 4 3 4 4

4.3. Library and Runtime Details

4.3.1. The GNU C Library

The glibc package contains the GNU C Library. This defines all functions specified by the ISO C
standard, POSIX specific features, some Unix derivatives, and GNU-specific extensions. The most
important set of shared libraries in the GNU C Library are the standard C and math libraries.

The GNU C Library defines its functions through specific header files, which you can declare in source
code. Each header file contains definitions of a group of related facilities; for example, the stdio.h
header file defines I/O-specific facilities, while math.h defines functions for computing mathematical
operations.

4.3.1.1. GNU C Library Updates

The Red Hat Enterprise Linux 6 version of the GNU C Library features the following improvements
over its Red Hat Enterprise Linux 5 version:

• Added locales, including:

• bo_CN

• bo_IN

Chapter 4. Libraries and Runtime Support

54

• shs_CA

• ber_DZ

• ber_MA

• en_NG

• fil_PH

• fur_IT

• fy_DE

• ha_NG

• ig_NG

• ik_CA

• iu_CA

• li_BE

• li_NL

• nds_DE

• nds_NL

• pap_AN

• sc_IT

• tk_TM

• Added new interfaces, namely:

• preadv

• preadv64

• pwritev

• pwritev64

• malloc_info

• mkostemp

• mkostemp64

• Added new Linux-specific interfaces, namely:

• epoll_pwait

• sched_getcpu

The GNU C Library

55

• accept4

• fallocate

• fallocate64

• inotify_init1

• dup3

• epoll_create1

• pipe2

• signalfd

• eventfd

• eventfd_read

• eventfd_write

• Added new checking functions, namely:

• asprintf

• dprintf

• obstack_printf

• vasprintf

• vdprintf

• obstack_vprintf

• fread

• fread_unlocked

• open*

• mq_open

For a more detailed list of updates to the GNU C Library, refer to /usr/share/doc/
glibc-version/NEWS . All changes as of version 2.12 apply to the GNU C Library in Red Hat
Enterprise Linux 6. Some of these changes have also been backported to Red Hat Enterprise Linux 5
versions of glibc.

4.3.1.2. GNU C Library Documentation

The GNU C Library is fully documented in the GNU C Library manual; to access this manual locally,
install glibc-devel and run info libc. An upstream version of this book is also available here:

http://www.gnu.org/software/libc/manual/html_mono/libc.html

http://www.gnu.org/software/libc/manual/html_mono/libc.html

Chapter 4. Libraries and Runtime Support

56

4.3.2. The GNU C++ Standard Library

The libstdc++ package contains the GNU C++ Standard Library, which is an ongoing project to
implement the ISO 14882 Standard C++ library.

Installing the libstdc++ package will provide just enough to satisfy link dependencies (i.e. only
shared library files). To make full use of all available libraries and header files for C++ development,
you must install libstdc++-devel as well. The libstdc++-devel package also contains a GNU-
specific implementation of the Standard Template Library (STL).

For Red Hat Enterprise Linux 4, 5, and 6, the C++ language and runtime implementation has
remained stable and as such no compatibility libraries are needed for libstdc++. However, this is
not the case for Red Hat Enterprise Linux 2 and 3. For Red Hat Enterprise Linux 2 compat-libstdc
++-296 needs to be installed. For Red Hat Enterprise Linux 3 compat-libstdc++-33 needs to be
installed. Neither of these are installed by default so need to be added separately.

4.3.2.1. GNU C++ Standard Library Updates

The Red Hat Enterprise Linux 6 version of the GNU C++ Standard Library features the following
improvements over its Red Hat Enterprise Linux 5 version:

• Added support for elements of ISO C++ TR1, namely:

• <tr1/array>

• <tr1/complex>

• <tr1/memory>

• <tr1/functional>

• <tr1/random>

• <tr1/regex>

• <tr1/tuple>

• <tr1/type_traits>

• <tr1/unordered_map>

• <tr1/unordered_set>

• <tr1/utility>

• <tr1/cmath>

• Added support for elements of the upcoming ISO C++ standard, C++0x. These elements include:

• <array>

• <chrono>

• <condition_variable>

The GNU C++ Standard Library

57

• <forward_list>

• <functional>

• <initalizer_list>

• <mutex>

• <random>

• <ratio>

• <regex>

• <system_error>

• <thread>

• <tuple>

• <type_traits>

• <unordered_map>

• <unordered_set>

• Added support for the -fvisibility command.

• Added the following extensions:

• __gnu_cxx::typelist

• __gnu_cxx::throw_allocator

For more information about updates to libstdc++ in Red Hat Enterprise Linux 6, refer to the C++
Runtime Library section of the following documents:

• GCC 4.2 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.2/
changes.html

• GCC 4.3 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.3/
changes.html

• GCC 4.4 Release Series Changes, New Features, and Fixes: http://gcc.gnu.org/gcc-4.4/
changes.html

4.3.2.2. GNU C++ Standard Library Documentation

To use the man pages for library components, install the libstdc++-docs package. This will provide
man page information for nearly all resources provided by the library; for example, to view information
about the vector container, use its fully-qualified component name:

man std::vector

This will display the following information (abbreviated):

http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html

Chapter 4. Libraries and Runtime Support

58

std::vector(3) std::vector(3)

NAME
 std::vector -

 A standard container which offers fixed time access to individual
 elements in any order.

SYNOPSIS
 Inherits std::_Vector_base< _Tp, _Alloc >.

 Public Types
 typedef _Alloc allocator_type
 typedef __gnu_cxx::__normal_iterator< const_pointer, vector >
 const_iterator
 typedef _Tp_alloc_type::const_pointer const_pointer
 typedef _Tp_alloc_type::const_reference const_reference
 typedef std::reverse_iterator< const_iterator >

The libstdc++-docs package also provides manuals and reference information in HTML form at
the following directory:

file:///usr/share/doc/libstdc++-docs-version/html/spine.html

The main site for the development of libstdc++ is hosted on gcc.gnu.org5.

4.3.3. Boost

The boost package contains a large number of free peer-reviewed portable C++ source libraries.
These libraries are suitable for tasks such as portable file-systems and time/date abstraction,
serialization, unit testing, thread creation and multi-process synchronization, parsing, graphing, regular
expression manipulation, and many others.

Installing the boost package will provide just enough libraries to satisfy link dependencies (i.e. only
shared library files). To make full use of all available libraries and header files for C++ development,
you must install boost-devel as well.

The boost package is actually a meta-package, containing many library sub-packages. These sub-
packages can also be installed in an a la carte fashion to provide finer inter-package dependency
tracking. The meta-package includes all of the following sub-packages:

• boost-date-time

• boost-filesystem

• boost-graph

• boost-iostreams

• boost-math

• boost-program-options

5 http://gcc.gnu.org/libstdc++

http://gcc.gnu.org/libstdc++
http://gcc.gnu.org/libstdc++

Boost

59

• boost-python

• boost-regex

• boost-serialization

• boost-signals

• boost-system

• boost-test

• boost-thread

• boost-wave

Not included in the meta-package are packages for static linking or packages that depend on the
underlying Message Passing Interface (MPI) support.

MPI support is provided in two forms: one for the default Open MPI implementation 7 , and another
for the alternate MPICH2 implementation. The selection of the underlying MPI library in use is up
to the user and depends on specific hardware details and user preferences. Please note that these
packages can be installed in parallel, as installed files have unique directory locations.

For Open MPI:

• boost-openmpi

• boost-openmpi-devel

• boost-graph-openmpi

• boost-openmpi-python

For MPICH2:

• boost-mpich2

• boost-mpich2-devel

• boost-graph-mpich2

• boost-mpich2-python

If static linkage cannot be avoided, the boost-static package will install the necessary static
libraries. Both thread-enabled and single-threaded libraries are provided.

4.3.3.1. Boost Updates

The Red Hat Enterprise Linux 6 version of Boost features many packaging improvements and new
features.

7 MPI support is not available on IBM System Z machines (where Open MPI is not available).

Chapter 4. Libraries and Runtime Support

60

Several aspects of the boost package have changed. As noted above, the monolithic boost
package has been augmented by smaller, more discrete sub-packages. This allows for more control
of dependencies by users, and for smaller binary packages when packaging a custom application that
uses Boost.

In addition, both single-threaded and multi-threaded versions of all libraries are packaged. The multi-
threaded versions include the mt suffix, as per the usual Boost convention.

Boost also features the following new libraries:

• Foreach

• Statechart

• TR1

• Typeof

• Xpressive

• Asio

• Bitmap

• Circular Buffer

• Function Types

• Fusion

• GIL

• Interprocess

• Intrusive

• Math/Special Functions

• Math/Statistical Distributions

• MPI

• System

• Accumulators

• Exception

• Units

• Unordered

• Proto

• Flyweight

• Scope Exit

• Swap

Qt

61

• Signals2

• Property Tree

Many of the existing libraries have been improved, bug-fixed, and otherwise enhanced.

4.3.3.2. Boost Documentation

The boost-doc package provides manuals and reference information in HTML form located in the
following directory:

file:///usr/share/doc/boost-doc-version/index.html

The main site for the development of Boost is hosted on boost.org8.

4.3.4. Qt

The qt package provides the Qt (pronounced "cute") cross-platform application development
framework used in the development of GUI programs. Aside from being a popular "widget toolkit", Qt
is also used for developing non-GUI programs such as console tools and servers. Qt was used in the
development of notable projects such as Google Earth, KDE, Opera, OPIE, VoxOx, Skype, VLC media
player and VirtualBox. It is produced by Nokia's Qt Development Frameworks division, which came
into being after Nokia's acquisition of the Norwegian company Trolltech, the original producer of Qt, on
June 17, 2008.

Qt uses standard C++ but makes extensive use of a special pre-processor called the Meta Object
Compiler (MOC) to enrich the language. Qt can also be used in other programming languages via
language bindings. It runs on all major platforms and has extensive internationalization support. Non-
GUI Qt features include SQL database access, XML parsing, thread management, network support,
and a unified cross-platform API for file handling.

Distributed under the terms of the GNU Lesser General Public License (among others), Qt is free
and open source software. The Red Hat Enterprise Linux 6 version of Qt supports a wide range of
compilers, including the GCC C++ compiler and the Visual Studio suite.

4.3.4.1. Qt Updates

Some of the improvements the Red Hat Enterprise Linux 6 version of Qt include:

• Advanced user experience

• Advanced Graphics Effects: options for opacity, drop-shadows, blur, colorization, and other
similar effects

• Animation and State Machine: create simple or complex animations without the hassle of
managing complex code

• Gesture and multi-touch support

8 http://boost.org

http://boost.org
http://boost.org

Chapter 4. Libraries and Runtime Support

62

• Support for new platforms

• Windows 7, Mac OSX 10.6, and other desktop platforms are now supported

• Added support for mobile development; Qt is optimized for the upcoming Maemo 6 platform,
and will soon be ported to Maemo 5. In addition, Qt now supports the Symbian platform, with
integration for the S60 framework.

• Added support for Real-Time Operating Systems such as QNX and VxWorks

• Improved performance, featuring added support for hardware-accelerated rendering (along with
other rendering updates)

• Updated cross-platform IDE

For more details on updates to Qt included in Red Hat Enterprise Linux 6, refer to the following links:

• http://doc.qt.nokia.com/4.6/qt4-6-intro.html

• http://doc.qt.nokia.com/4.6/qt4-intro.html

4.3.4.2. Qt Creator

Qt Creator is a cross-platform IDE tailored to the needs of Qt developers. It includes the following
graphical tools:

• An advanced C++ code editor

• Integrated GUI layout and forms designer

• Project and build management tools

• Integrated, context-sensitive help system

• Visual debugger

• Rapid code navigation tools

For more information about Qt Creator, refer to the following link:

http://qt.nokia.com/products/appdev/developer-tools/developer-tools#qt-tools-at-a

4.3.4.3. Qt Library Documentation

The qt-doc package provides HTML manuals and references located in /usr/share/doc/qt4/
html/. This package also provides the Qt Reference Documentation, which is an excellent starting
point for development within the Qt framework.

You can also install further demos and examples from qt-demos and qt-examples. To get an
overview of the capabilities of the Qt framework, refer to /usr/bin/qtdemo-qt4 (provided by qt-
demos).

For more information on the development of Qt, refer to the following online resources:

• Qt Developer Blogs: http://labs.trolltech.com/blogs/

• Qt Developer Zone: http://qt.nokia.com/developer/developer-zone

http://doc.qt.nokia.com/4.6/qt4-6-intro.html
http://doc.qt.nokia.com/4.6/qt4-intro.html
http://qt.nokia.com/products/appdev/developer-tools/developer-tools#qt-tools-at-a
http://labs.trolltech.com/blogs/
http://qt.nokia.com/developer/developer-zone

KDE Development Framework

63

• Qt Mailing List: http://lists.trolltech.com/

4.3.5. KDE Development Framework

The kdelibs-devel package provides the KDE libraries, which build on Qt to provide a framework
for making application development easier. The KDE development framework also helps provide
consistency across the KDE desktop environment.

4.3.5.1. KDE4 Architecture

The KDE development framework's architecture in Red Hat Enterprise Linux 6 uses KDE4, which is
built on the following technologies:

Plasma

Plasma replaces KDesktop in KDE4. Its implementation is based on the Qt Graphics View
Framework, which was introduced in Qt 4.2. For more information about Plasma, refer to http://
techbase.kde.org/Development/Architecture/KDE4/Plasma.

Sonnet

Sonnet is a multilingual spell-checking application that supports automatic language detection,
primary/backup dictionaries, and other useful features. It replaces kspell2 in KDE4.

KIO

The KIO library provides a framework for network-transparent file handling, allowing users to
easily access files through network-transparent protocols. It also helps provides standard file
dialogs.

KJS/KHTML

KJS and KHTML are fully-fledged JavaScript and HTML engines used by different applications
native to KDE4 (such as konqueror).

Solid

Solid is a hardware and network awareness framework that allows you to develop applications
with hardware interaction features. Its comprehensive API provides the necessary abstraction
to support cross-platform application development. For more information, refer to http://
techbase.kde.org/Development/Architecture/KDE4/Solid.

Phonon

Phonon is a multimedia framework that helps you develop applications with multimedia
functionalities. It facilitates the usage of media capabilities within KDE. For more information, refer
to http://techbase.kde.org/Development/Architecture/KDE4/Phonon.

Telepathy

Telepathy provides a real-time communication and collaboration framework within
KDE4. Its primary function is to tighten integration between different components

http://lists.trolltech.com/
http://techbase.kde.org/Development/Architecture/KDE4/Plasma
http://techbase.kde.org/Development/Architecture/KDE4/Plasma
http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Phonon

Chapter 4. Libraries and Runtime Support

64

within KDE. For a brief overview on the project, refer to http://community.kde.org/Real-
Time_Communication_and_Collaboration.

Akonadi

Akonadi provides a framework for centralizing storage of Parallel Infrastructure Management
(PIM) components. For more information, refer to http://techbase.kde.org/Development/
Architecture/KDE4/Akonadi.

Online Help within KDE4
KDE4 also features an easy-to-use Qt-based framework for adding online help capabilities to
applications. Such capabilities include tooltips, hover-help information, and khelpcenter manuals.
For a brief overview on online help within KDE4, refer to http://techbase.kde.org/Development/
Architecture/KDE4/Providing_Online_Help.

KXMLGUI

KXMLGUI is a framework for designing user interfaces using XML. This framework allows you
to design UI elements based on "actions" (defined by the developer) without having to revise
source code. For more information, refer to http://developer.kde.org/documentation/library/kdeqt/
kde3arch/xmlgui.html.

Strigi

Strigi is a desktop search daemon compatible with many desktop environments and operating
systems. It uses its own jstream system which allows for deep indexing of files. For more
information on the development of Strigi, refer to http://www.vandenoever.info/software/strigi/.

KNewStuff2

KNewStuff2 is a collaborative data sharing library used by many KDE4 applications. For more
information, refer to http://techbase.kde.org/Projects/KNS2.

4.3.5.2. kdelibs Documentation

The kdelibs-apidocs package provides HTML documentation for the KDE development framework
in /usr/share/doc/HTML/en/kdelibs4-apidocs/. The following links also provide details on
KDE-related programming tasks:

• http://techbase.kde.org/

• http://techbase.kde.org/Development/Tutorials

• http://techbase.kde.org/Development/FAQs

• http://api.kde.org

4.3.6. NSS Shared Databases
The NSS shared database format, introduced on NSS 3.12, is now available in Red Hat Enterprise 6.
This encompasses a number of new features and components to improve access and usability.

Included, is the NSS certificate and key database which are now sqlite-based and allow for concurrent
access. The legacy key3.db and cert8.db are also replaced with new SQL databases called

http://community.kde.org/Real-Time_Communication_and_Collaboration
http://community.kde.org/Real-Time_Communication_and_Collaboration
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
http://developer.kde.org/documentation/library/kdeqt/kde3arch/xmlgui.html
http://developer.kde.org/documentation/library/kdeqt/kde3arch/xmlgui.html
http://www.vandenoever.info/software/strigi/
http://techbase.kde.org/Projects/KNS2
http://techbase.kde.org/
http://techbase.kde.org/Development/Tutorials
http://techbase.kde.org/Development/FAQs
http://api.kde.org

Python

65

key4.db and cert9.db. These new databases will store PKCS #11 token objects, which are the
same as what is currently stored in cert8.db and key3.db.

Having support for shared databases enables a system-wide NSS database. It resides in /etc/pki/
nssdb where globally trusted CA certificates become accessible to all applications. The command
rv = NSS_InitReadWrite("sql:/etc/pki/nssdb"); initializes NSS for applications. If the
application is run with root privileges, then the system-wide database is available on a read and write
basis. However, if it is run with normal user privileges it becomes read only.

Additionally, a PEM PKCS #11 module for NSS allows applications to load into memory certificates
and keys stored in PEM-formatted files (for example, those produced by openssl).

4.3.6.1. Backwards Compatibility
The binary compatibility guarantees made by NSS upstream are preserved in NSS for Red Hat
Enterprise Linux 6. This guarantee states that the NSS 3.12 is backwards compatible with all older
NSS 3.x shared libraries. Therefore, a program linked with an older NSS 3.x shared library will work
without recompiling or relinking, and any applications that restrict the use of NSS APIs to the NSS
Public Functions remain compatible with future versions of the NSS shared libraries.

Red Hat Enterprise Linux 5 and 4 run on the same version of NSS as Red Hat Enterprise Linux 6 so
there are no ABI or API changes. However, there are still differences as NSS's internal cryptographic
module in Red Hat Enterprise Linux 6 is the one from NSS 3.12, whereas Red Hat Enterprise
Linux 5 and 4 still use the older one from NSS 3.15. This means that new functionality that had been
introduced with NSS 3.12, such as the shared database, is now available with Red Hat Enterprise
Linux 6's version of NSS.

4.3.6.2. NSS Shared Databases Documentation
Mozilla's wiki page explains the system-wide database rationale in great detail and can be accessed
here9.

4.3.7. Python

The python package adds support for the Python programming language. This package provides the
object and cached bytecode files needed to enable runtime support for basic Python programs. It also
contains the python interpreter and the pydoc documentation tool. The python-devel package
contains the libraries and header files needed for developing Python extensions.

Red Hat Enterprise Linux also ships with numerous python-related packages. By convention, the
names of these packages have a python prefix or suffix. Such packages are either library extensions
or python bindings to an existing library. For instance, dbus-python is a Python language binding for
D-Bus.

Note that both cached bytecode (*.pyc/*.pyo files) and compiled extension modules (*.so files) are
incompatible between Python 2.4 (used in Red Hat Enterprise Linux 5) and Python 2.6 (used in Red
Hat Enterprise Linux 6). As such, you will need to rebuild any extension modules you use that are not
part of Red Hat Enterprise Linux.

4.3.7.1. Python Updates

9 http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX

http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX
http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX

Chapter 4. Libraries and Runtime Support

66

The Red Hat Enterprise Linux 6 version of Python features various language changes. For information
about these changes, refer to the following project resources:

• What's New in Python 2.5: http://docs.python.org/whatsnew/2.5.html

• What's New in Python 2.6: http://docs.python.org/whatsnew/2.6.html

Both resources also contain advice on porting code developed using previous Python versions.

4.3.7.2. Python Documentation

For more information about Python, refer to man python. You can also install python-docs, which
provides HTML manuals and references in the following location:

file:///usr/share/doc/python-docs-version/html/index.html

For details on library and language components, use pydoc component_name. For example, pydoc
math will display the following information about the math Python module:

Help on module math:

NAME
 math

FILE
 /usr/lib64/python2.6/lib-dynload/mathmodule.so

DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.

FUNCTIONS
 acos[...]
 acos(x)

 Return the arc cosine (measured in radians) of x.

 acosh[...]
 acosh(x)

 Return the hyperbolic arc cosine (measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in radians) of x.

 asinh[...]
 asinh(x)

 Return the hyperbolic arc sine (measured in radians) of x.

The main site for the Python development project is hosted on python.org11.

4.3.8. Java

11 http://python.org

http://docs.python.org/whatsnew/2.5.html
http://docs.python.org/whatsnew/2.6.html
http://python.org
http://python.org

Ruby

67

The java-1.6.0-openjdk package adds support for the Java programming language. This
package provides the java interpreter. The java-1.6.0-openjdk-devel package contains the
javac compiler, as well as the libraries and header files needed for developing Java extensions.

Red Hat Enterprise Linux also ships with numerous java-related packages. By convention, the names
of these packages have a java prefix or suffix.

4.3.8.1. Java Documentation

For more information about Java, refer to man java. Some associated utilities also have their own
respective man pages.

You can also install other Java documentation packages for more details about specific Java utilities.
By convention, such documentation packages have the javadoc suffix (e.g. dbus-java-javadoc).

The main site for the development of Java is hosted on http://openjdk.java.net/. The main site for the
library runtime of Java is hosted on http://icedtea.classpath.org.

4.3.9. Ruby

The ruby package provides the Ruby interpreter and adds support for the Ruby programming
language. The ruby-devel package contains the libraries and header files needed for developing
Ruby extensions.

Red Hat Enterprise Linux also ships with numerous ruby-related packages. By convention, the
names of these packages have a ruby or rubygem prefix or suffix. Such packages are either library
extensions or Ruby bindings to an existing library.

Examples of ruby-related packages include:

• ruby-flexmock

• rubygem-flexmock

• rubygems

• ruby-irb

• ruby-libguestfs

• ruby-libs

• ruby-qpid

• ruby-rdoc

• ruby-ri

• ruby-saslwrapper

• ruby-static

• ruby-tcltk

For information about updates to the Ruby language in Red Hat Enterprise Linux 6, refer to the
following resources:

http://openjdk.java.net/
http://icedtea.classpath.org

Chapter 4. Libraries and Runtime Support

68

• file:///usr/share/doc/ruby-version/NEWS

• file:///usr/share/doc/ruby-version/NEWS-version

4.3.9.1. Ruby Documentation

For more information about Ruby, refer to man ruby. You can also install ruby-docs, which provides
HTML manuals and references in the following location:

file:///usr/share/doc/ruby-docs-version/

The main site for the development of Ruby is hosted on http://www.ruby-lang.org. The http://www.ruby-
doc.org site also contains Ruby documentation.

4.3.10. Perl

The perl package adds support for the Perl programming language. This package provides Perl core
modules, the Perl Language Interpreter, and the PerlDoc tool.

Red Hat also provides various perl modules in package form; these packages are named with the
perl-* prefix. These modules provide stand-alone applications, language extensions, Perl libraries,
and external library bindings.

4.3.10.1. Perl Updates

Red Hat Enterprise Linux 6.0 ships with perl-5.10.1. If you are running an older system, rebuild or
alter external modules and applications accordingly in order to ensure optimum performance.

For a full list of the differences between the Perl versions refer to the following documents:

• Perl 5.10 delta: http://perldoc.perl.org/perl5100delta.html

• Perl 5.10.1 delta: http://perldoc.perl.org/perl5101delta.html

4.3.10.2. Installation

Perl's capabilities can be extended by installing additional modules. These modules come in the
following forms:

Official Red Hat RPM
The official module packages can be installed with yum or rpm from the Red Hat Enterprise Linux
repositories. They are installed to /usr/share/perl5 and either /usr/lib/perl5 for 32bit
architectures or /usr/lib64/perl5 for 64bit architectures.

Modules from CPAN
Use the cpan tool provided by the perl-CPAN package to install modules directly from the CPAN
website. They are installed to /usr/local/share/perl5 and either /usr/local/lib/perl5
for 32bit architectures or /usr/local/lib64/perl5 for 64bit architectures.

Third party module package
Third party modules are installed to /usr/share/perl5/vendor_perl and either /usr/lib/
perl5/vendor_perl for 32bit architectures or /usr/lib64/perl5/vendor_perl for 64bit
architectures.

http://www.ruby-lang.org
http://www.ruby-doc.org
http://www.ruby-doc.org
http://perldoc.perl.org/perl5100delta.html
http://perldoc.perl.org/perl5101delta.html

Perl

69

Custom module package / manually installed module
These should be placed in the same directories as third party modules. That is, /usr/share/
perl5/vendor_perl and either /usr/lib/perl5/vendor_perl for 32bit architectures or /
usr/lib64/perl5/vendor_perl for 64bit architectures.

Warning

If an official version of a module is already installed, installing its non-official version can create
conflicts in the /usr/share/man directory.

4.3.10.3. Perl Documentation

The perldoc tool provides documentation on language and core modules. To learn more about a
module, use perldoc module_name. For example, perldoc CGI will display the following information
about the CGI core module:

NAME
 CGI - Handle Common Gateway Interface requests and responses

SYNOPSIS
 use CGI;

 my $q = CGI->new;

[...]

DESCRIPTION
 CGI.pm is a stable, complete and mature solution for processing and preparing HTTP requests
 and responses. Major features including processing form submissions, file uploads, reading
 and writing cookies, query string generation and manipulation, and processing and preparing
 HTTP headers. Some HTML generation utilities are included as well.

[...]

PROGRAMMING STYLE
 There are two styles of programming with CGI.pm, an object-oriented style and a function-
oriented style. In the object-oriented style you create one or more CGI objects and then use
 object methods to create the various elements of the page. Each CGI object starts out with
 the list of named parameters that were passed to your CGI script by the server.

[...]

For details on Perl functions, use perldoc -f function_name. For example, perldoc -f split wil
display the following information about the split function:

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/
split Splits the string EXPR into a list of strings and returns that list. By default,
 empty leading fields are preserved, and empty trailing ones are deleted. (If all fields are
 empty, they are considered to be trailing.)

In scalar context, returns the number of fields found. In scalar and void context it splits
 into the @_ array. Use of split in scalar and void context is deprecated, however, because
 it clobbers your subroutine arguments.

Chapter 4. Libraries and Runtime Support

70

If EXPR is omitted, splits the $_ string. If PATTERN is also omitted, splits on whitespace
 (after skipping any leading whitespace). Anything matching PATTERN is taken to be
 a delimiter separating the fields. (Note that the delimiter may be longer than one
 character.)

[...]

Current PerlDoc documentation can be found on perldoc.perl.org17.

Core and external modules are documented on the Comprehensive Perl Archive Network18.

17 http://perldoc.perl.org/
18 http://www.cpan.org/

http://perldoc.perl.org/
http://www.cpan.org/
http://perldoc.perl.org/
http://www.cpan.org/

Chapter 5.

71

Compiling and Building
Red Hat Enterprise Linux 6 includes many packages used for software development, including tools
for compiling and building source code. This chapter discusses several of these packages and tools
used to compile source code.

5.1. GNU Compiler Collection (GCC)

The GNU Compiler Collection (GCC) is a set of tools for compiling a variety of programming
languages (including C, C++, ObjectiveC, ObjectiveC++, Fortran, and Ada) into highly optimized
machine code. These tools include various compilers (like gcc and g++), run-time libraries (like
libgcc, libstdc++, libgfortran, and libgomp), and miscellaneous other utilities.

5.1.1. GCC Status and Features
GCC for Red Hat Enterprise Linux 6 is based on the 4.4.x release series and includes several bug
fixes, enhancements, and backports from upcoming releases (including the GCC 4.5). However, GCC
4.5 was not considered sufficiently mature for an enterprise distribution when RHEL6 features were
frozen.

This standardization means that as updates to the 4.4 series become available (4.4.1, 4.4.2, ect),
they will be incorporated into the compiler included with RHEL6 as updates. Red Hat may import
additional backports and enhancements from upcoming releases outside the 4.4 series that won't
break compatibility within the Enterprise Linux release. Occasionally, code that was not compliant
to standards may fail to compile or its functionality may change in the process of fixing bugs or
maintaining standards compliant behavior.

Since the previous release of Red Hat Enterprise Linux, GCC has had three major releases: 4.2.x,
4.3.x, and 4.4.x. A selective summary of the expansive list of changes follows.

• The inliner, dead code elimination routines, compile time, and memory usage codes are now
improved. This release also features a new register allocator, instruction scheduler, and software
pipeliner.

• Version 3.0 of the OpenMP specification is now supported for the C, C++, and Fortran compilers.

• Experimental support for the upcoming ISO C++ standard (C++0x) is included. This has support
for auto/inline namespaces, character types, and scoped enumerations. To enable this, use the
compiler options -std=c++0x (which disables GNU extensions) or -std=gnu++0x.

For a more detailed list of the status of C++0x improvements, refer to:

http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

• GCC now incorporates the Variable Tracking at Assignments (VTA) infrastructure. This allows GCC
to better track variables during optimizations so that it can produce improved debugging information
(i.e. DWARF) for the GNU Project Debugger, SystemTap, and other tools. For a brief overview of
VTA, refer to Section 6.3, “Variable Tracking at Assignments”.

With VTA you can debug optimized code drastically better than with previous GCC releases, and
you do not have to compile with -O0 to provide a better debugging experience.

• Fortran 2008 is now supported, while support for Fortran 2003 is extended.

http://gcc.gnu.org/gcc-4.4/cxx0x_status.html

Chapter 5. Compiling and Building

72

For a more detailed list of improvements in GCC, refer to:

• Updates in the 4.2 Series: http://gcc.gnu.org/gcc-4.2/changes.html

• Updates in the 4.3 Series: http://gcc.gnu.org/gcc-4.3/changes.html

• Updates in the 4.4 Series: http://gcc.gnu.org/gcc-4.4/changes.html

In addition to the changes introduced via the GCC 4.4 rebase, the Red Hat Enterprise Linux 6 version
of GCC also features several fixes and enhancements backported from upstream sources (i.e. version
4.5 and beyond). These improvements include the following (among others):

• Improved DWARF3 debugging for debugging optimized C++ code.

• Fortran optimization improvements.

• More accurate instruction length information for ix86, Intel 64 and AMD64, and s390.

• Intel Atom support

• POWER7 support

• C++ raw string support, u/U/u8 string literal support

5.1.2. Language Compatibility
Application Binary Interfaces specified by the GNU C, C++, Fortran and Java Compiler include:

• Calling conventions. These specify how arguments are passed to functions and how results are
returned from functions.

• Register usage conventions. These specify how processor registers are allocated and used.

• Object file formats. These specify the representation of binary object code.

• Size, layout, and alignment of data types. These specify how data is laid out in memory.

• Interfaces provided by the runtime environment. Where the documented semantics do not change
from one version to another they must be kept available and use the same name at all times.

The default system C compiler included with Red Hat Enterprise Linux 6 is largely compatible with the
C99 ABI standard. Deviations from the C99 standard in GCC 4.4 are tracked online3.

In addition to the C ABI, the Application Binary Interface for the GNU C++ Compiler specifies the
binary interfaces needed to support the C++ language, such as:

• Name mangling and demangling

• Creation and propagation of exceptions

• Formatting of run-time type information

• Constructors and destructors

• Layout, alignment, and padding of classes and derived classes

3 http://gcc.gnu.org/gcc-4.4/c99status.html

http://gcc.gnu.org/gcc-4.2/changes.html
http://gcc.gnu.org/gcc-4.3/changes.html
http://gcc.gnu.org/gcc-4.4/changes.html
http://gcc.gnu.org/gcc-4.4/c99status.html
http://gcc.gnu.org/gcc-4.4/c99status.html

Language Compatibility

73

• Virtual function implementation details, such as the layout and alignment of virtual tables

The default system C++ compiler included with Red Hat Enterprise Linux 6 conforms to the C++ ABI
defined by the Itanium C++ ABI (1.86)4.

Although every effort has been made to keep each version of GCC compatible with previous releases,
some incompatibilities do exist.

ABI incompatibilities between RHEL6 and RHEL5
The following is a list of known incompatibilities between the Red Hat Enterprise Linux 6 and 5
toolchains.

• Passing/returning structs with flexible array members by value changed in some cases on Intel 64
and AMD64.

• Passing/returning of unions with long double members by value changed in some cases on Intel 64
and AMD64.

• Passing/returning structs with complex float member by value changed in some cases on Intel 64
and AMD64.

• Passing of 256-bit vectors on x86, Intel 64 and AMD64 platforms changed when -mavx is used.

• There have been multiple changes in passing of _Decimal{32,64,128} types and aggregates
containing those by value on several targets.

• Packing of packed char bitfields changed in some cases.

ABI incompatibilities between RHEL5 and RHEL4
The following is a list of known incompatibilities between the Red Hat Enterprise Linux 5 and 4
toolchains.

• There have been changes in the library interface specified by the C++ ABI for thread-safe
initialization of function-scope static variables.

• On Intel 64 and AMD64, the medium model for building applications where data segment
exceeds 4GB, was redesigned to match the latest ABI draft at the time. The ABI change results in
incompatibility among medium model objects.

The compiler flag -Wabi can be used to get diagnostics indicating where these constructs appear in
source code, though it will not catch every single case. This flag is especially useful for C++ code to
warn whenever the compiler generates code that is known to be incompatible with the vendor-neutral
C++ ABI.

Excluding the incompatibilities listed above, the GCC C and C++ language ABIs are mostly ABI
compatible. The vast majority of source code will not encounter any of the known issues, and can be
considered compatible.

Compatible ABIs allow the objects created by compiling source code to be portable to other systems.
In particular, for Red Hat Enterprise Linux, this allows for upward compatibility. Upward compatibility is
defined as the ability to link shared libraries and objects, created using a version of the compilers in a

4 http://www.codesourcery.com/cxx-abi/

http://www.codesourcery.com/cxx-abi/
http://www.codesourcery.com/cxx-abi/

Chapter 5. Compiling and Building

74

particular RHEL release, with no problems. This includes new objects compiled on subsequent RHEL
releases.

The C ABI is considered to be stable, and has been so since at least RHEL3 (again, barring any
incompatibilities mentioned in the above lists). Libraries built on RHEL3 and later can be linked to
objects created on a subsequent environment (RHEL4, RHEL5, and RHEL6).

The C++ ABI is considered to be stable, but less stable than the C ABI, and only as of RHEL4
(corresponding to GCC version 3.4 and above.). As with C, this is only an upward compatibility.
Libraries built on RHEL4 and above can be linked to objects created on a subsequent environment
(RHEL5, and RHEL6).

To force GCC to generate code compatible with the C++ ABI in RHEL releases prior to RHEL4, some
developers have used the -fabi-version=1 option. This practice is not recommended. Objects
created this way are indistinguishable from objects conforming to the current stable ABI, and can be
linked (incorrectly) amongst the different ABIs, especially when using new compilers to generate code
to be linked with old libraries that were built with tools prior to RHEL4.

Warning

The above incompatibilities make it incredibly difficult to maintain ABI shared library sanity
between releases, especially when developing custom libraries with multiple dependencies
outside of the core libraries. Therefore, if shared libraries are developed, it is highly recommend
that a new version is built for each Red Hat Enterprise Linux release.

5.1.3. Object Compatibility and Interoperability
Two items that are important are the changes and enhancements in the underlying tools used by the
compiler, and the compatibility between the different versions of a language's compiler.

Changes and new features in tools like ld (distributed as part of the binutils package) or in the
dynamic loader (ld.so, distributed as part of the glibc package) can subtly change the object files
that the compiler produces. These changes mean that object files moving to the current release of Red
Hat Enterprise Linux from previous releases may loose functionality, behave differently at runtime, or
otherwise interoperate in a diminished capacity. Known problem areas include:

• ld --build-id

In RHEL6 this is passed to ld by default, whereas RHEL5 ld doesn't recognize it.

• as .cfi_sections support

In RHEL6 this directive allows .debug_frame, .eh_frame or both to be emitted from .cfi*
directives. In RHEL5 only .eh_frame is emitted.

• as, ld, ld.so, and gdb STB_GNU_UNIQUE and %gnu_unique_symbol support

In RHEL6 more debug information is generated and stored in object files. This information relies
on new features detailed in the DWARF standard, and also on new extensions not yet standardized.
In RHEL5, tools like as, ld, gdb, objdump, and readelf may not be prepared for this new
information and may fail to interoperate with objects created with the newer tools. In addition,
RHEL5 produced object files do not support these new features; these object files may be handled
by RHEL6 tools in a sub-optimal manner.

Backwards Compatibility Packages

75

An outgrowth of this enhanced debug information is that the debuginfo packages that ship with
system libraries allow you to do useful source level debugging into system libraries if they are
installed. Refer to Section 6.1, “Installing Debuginfo Packages” for more information on debuginfo
packages.

Object file changes, such as the ones listed above, may interfere with the portable use of prelink.

5.1.4. Backwards Compatibility Packages
Several packages are provided to serve as an aid for those moving source code or executables from
older versions of Red Hat Enterprise Linux to the current release. These packages are intended to
be used as a temporary aid in transitioning sources to newer compilers with changed behavior, or
as a convenient way to otherwise isolate differences in the system environment from the compile
environment.

Note

Please be advised that Red Hat may remove these packages in future Red Hat Enterprise Linux
releases.

The following packages provide compatibility tools for compiling Fortran or C++ source code on the
current release of Red Hat Enterprise Linux 6 as if one was using the older compilers on Red Hat
Enterprise Linux 4:

• compat-gcc-34

• compat-gcc-34-c++

• compat-gcc-34-g77

The following package provides a compatibility runtime library for Fortran executables compiled on
Red Hat Enterprise Linux 5 to run without recompilation on the current release of Red Hat Enterprise
Linux 6:

• compat-libgfortran-41

Please note that backwards compatibility library packages are not provided for all supported system
libraries, just the system libraries pertaining to the compiler and the C/C++ standard libraries.

For more information about backwards compatibility library packages, refer to the Application
Compatibility section of the Red Hat Enterprise Linux 6 Migration Guide.

5.1.5. Previewing RHEL6 compiler features on RHEL5
On Red Hat Enterprise Linux 5, we have included the package gcc44 as an update. This is a backport
of the RHEL6 compiler to allow users running RHEL5 to compile their code with the RHEL6 compiler
and experiment with new features and optimizations before upgrading their systems to the next major
release. The resulting binary will be forward compatible with RHEL6, so one can compile on RHEL5
with gcc44 and run on RHEL5, RHEL6, and above.

The RHEL5 gcc44 compiler will be kept reasonably in step with the GCC 4.4.x that we ship with
RHEL6 to ease transition. Though, to get the latest features, it is recommended RHEL6 is used for
development. The gcc44 is only provided as an aid in the conversion process.

Chapter 5. Compiling and Building

76

5.1.6. Running GCC

To compile using GCC tools, first install binutils and gcc; doing so will also install several
dependencies.

In brief, the tools work via the gcc command. This is the main driver for the compiler. It can be used
from the command line to pre-process or compile a source file, link object files and libraries, or perform
a combination thereof. By default, gcc takes care of the details and links in the provided libgcc
library.

The compiler functions provided by GCC are also integrated into the Eclipse IDE as part of the CDT.
This presents many advantages, particularly for developers who prefer a graphical interface and
fully integrated environment. For more information about compiling in Eclipse, refer to Section 1.3, “
Development Toolkits”.

Conversely, using GCC tools from the command-line interface consumes less system resources. This
also allows finer-grained control over compilers; GCC's command-line tools can even be used outside
of the graphical mode (runlevel 5).

5.1.6.1. Simple C Usage
Basic compilation of a C language program using GCC is easy. Start with the following simple
program:

hello.c

#include <stdio.h>

int main ()
{
 printf ("Hello world!\n");
 return 0;
}

The following procedure illustrates the compilation process for C in its most basic form.

Procedure 5.1. Compiling a 'Hello World' C Program
1. Compile hello.c into an executable with:

gcc hello.c -o hello

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run the hello binary, i.e. hello.

5.1.6.2. Simple C++ Usage
Basic compilation of a C++ language program using GCC is similar. Start with the following simple
program:

hello.cc

Running GCC

77

#include <iostream>

using namespace std;

int main(void)
{
 cout << "Hello World!" << endl;
 return 0;
}

The following procedure illustrates the compilation process for C++ in its most basic form.

Procedure 5.2. Compiling a 'Hello World' C++ Program
1. Compile hello.cc into an executable with:

g++ hello.cc -o hello

Ensure that the resulting binary hello is in the same directory as hello.cc.

2. Run the hello binary, i.e. hello.

5.1.6.3. Simple Multi-File Usage
To use basic compilation involving multiple files or object files, start with the following two source files:

one.c

#include <stdio.h>
void hello()
{
 printf("Hello world!\n");
}

two.c

extern void hello();

int main()
{
 hello();
 return 0;
}

The following procedure illustrates a simple, multi-file compilation process in its most basic form.

Procedure 5.3. Compiling a Program with Multiple Source Files
1. Compile one.c into an executable with:

gcc -c one.c -o one.o

Ensure that the resulting binary one.o is in the same directory as one.c.

2. Compile two.c into an executable with:

gcc -c two.c -o two.o

Ensure that the resulting binary two.o is in the same directory as two.c.

Chapter 5. Compiling and Building

78

3. Compile the two object files one.o and two.o into a single executable with:

gcc one.o two.o -o hello

Ensure that the resulting binary hello is in the same directory as one.o and two.o.

4. Run the hello binary, i.e. hello.

5.1.6.4. Recommended Optimization Options
Different projects require different optimization options. There is no one-size-fits-all approach when it
comes to optimization, but here are a few guidelines to keep in mind.

Instruction selection and tuning
It is very important to chose the correct architecture for instruction scheduling. By default GCC
produces code is optimized for the most common processors, but if the CPU on which your code will
run is known, the corresponding -mtune= option to optimize the instruction scheduling, and -march=
option to optimize the instruction selection should be used.

The option -mtune= optimizes instruction scheduling to fit your architecture by tuning everything
except the ABI and the available instruction set. This option will not chose particular instructions,
but instead will tune your program in such a way that executing on a particular architecture will be
optimized. For example, if an Intel Core2 CPU will predominantly be used, choose -mtune=core2.
If the wrong choice is made, the program will still run, but not optimally on the given architecture. The
architecture on which the program will most likely run should always be chosen.

The option -march= optimizes instruction selection. As such, it is important to choose correctly as
choosing incorrectly will cause your program to fail. This option selects the instruction set used when
generating code. For example, if the program will be run on an AMD K8 core based CPU, choose -
march=k8. Specifying the architecture with this option will imply -mtune=.

The -mtune= and -march= commands should only be used for tuning and selecting instructions
within a given architecture, not to generate code for a different architecture (also known as cross-
compiling). For example, this is not to be used to generate PowerPC code from an Intel 64 and
AMD64 platform.

For a complete list of the available options for both -march= and -mtune=, refer to the GCC
documentation available here: GCC 4.4.4 Manual: Hardware Models and Configurations5

General purpose optimization flags
The compiler flag -O2 is a good middle of the road option to generate fast code. It produces the best
optimized code when the resulting code size is not large. Use this when unsure what would best suit.

When code size is not an issue, -O3 is preferable. This option produces code that is slightly larger
but runs faster because of a more frequent inline of functions. This is ideal for floating point intensive
code.

The other general purpose optimization flag is -Os. This flag also optimizes for size, and produces
faster code in situations where a smaller footprint will increase code locality, thereby reducing cache
misses.

5 http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

Running GCC

79

Use -frecord-gcc-switches when compiling objects. This records the options used to build
objects into objects themselves. After an object is built, it determines which set of options were used
to build it. The set of options are then recorded in a section called .GCC.command.line within the
object and can be examined with the following:

$ gcc -frecord-gcc-switches -O3 -Wall hello.c -o hello
$ readelf --string-dump=.GCC.command.line hello

String dump of section '.GCC.command.line':
 [0] hello.c
 [8] -mtune=generic
 [17] -O3
 [1b] -Wall
 [21] -frecord-gcc-switches

It is very important to test and try different options with a representative data set. Often, different
modules or objects can be compiled with different optimization flags in order to produce optimal
results. Refer to Section 5.1.6.5, “Using Profile Feedback to Tune Optimization Heuristics.” for
additional optimization tuning.

5.1.6.5. Using Profile Feedback to Tune Optimization Heuristics.
During the transformation of a typical set of source code into an executable, tens of hundreds of
choices must be made about the importance of speed in one part of code over another, or code size
as opposed to code speed. By default, these choices are made by the compiler using reasonable
heuristics, tuned over time to produce the optimum runtime performance. However, GCC also has
a way to teach the compiler to optimize executables for a specific machine in a specific production
environment. This feature is called profile feedback.

Profile feedback is used to tune optimizations such as:

• Inlining

• Branch prediction

• Instruction scheduling

• Inter-procedural constant propagation

• determining of hot or cold functions

Profile feedback compiles a program first to generate a program that is run and analyzed and then a
second time to optimize with the gathered data.

Procedure 5.4. Using Profile Feedback
1. Step One

The application must be instrumented to produce profiling information by compiling it with -
fprofile-generate.

2. Step Two
Run the application to accumulate and save the profiling information.

3. Step Three
Recompile the application with -fprofile-use.

Step three will use the profile information gathered in step one to tune the compiler's heuristics while
optimizing the code into a final executable.

Chapter 5. Compiling and Building

80

Procedure 5.5. Compiling a Program with Profiling Feedback
1. Compile source.c to include profiling instrumentation:

gcc source.c -fprofile-generate -O2 -o executable

2. Run executable to gather profiling information:

./executable

3. Recompile and optimize source.c with profiling information gathered in step one:

gcc source.c -fprofile-use -O2 -o executable

Multiple data collection runs, as seen in step two, will accumulate data into the profiling file instead
of replacing it. This allows the executable in step two to be run multiple times with additional
representative data in order to collect even more information.

The executable must run with representative levels of both the machine being used and a respective
data set large enough for the input needed. This ensures optimal results are achieved.

By default, GCC will generate the profile data into the directory where step one was performed. To
generate this information elsewhere, compile with -fprofile-dir=DIR where DIR is the preferred
output directory.

Warning

The format of the compiler feedback data file changes between compiler versions. It is imperative
that the program compilation is repeated with each version of the compiler.

5.1.6.6. Using 32-bit compilers on a 64-bit host
On a 64-bit host, GCC will build executables that can only run on 64-bit hosts. However, GCC can be
used to build executables that will run both on 64-bit hosts and on 32-bit hosts.

To build 32-bit binaries on a 64-bit host, first install 32-bit versions of any supporting libraries the
executable may need. This must at least include supporting libraries for glibc and libgcc, and
possibly for libstdc++ if the program is a C++ program. On Intel 64 and AMD64, this can be done
with:

yum install glibc-devel.i686 libgcc.i686 libstdc++-devel.i686

There may be cases where it is useful to to install additional 32-bit libraries that a program may need.
For example, if a program uses the db4-devel libraries to build, the 32-bit version of these libraries
can be installed with:

yum install db4-devel.i686

Note

The .i686 suffix on the x86 platform (as opposed to x86-64) specifies a 32-bit version of the
given package. For PowerPC architectures, the suffix is ppc (as opposed to ppc64).

Running GCC

81

After the 32-bit libraries have been installed, the -m32 option can be passed to the compiler and
linker to produce 32-bit executables. Provided the supporting 32-bit libraries are installed on the 64-bit
system, this executable will be able to run on both 32-bit systems and 64-bit systems.

Procedure 5.6. Compiling a 32-bit Program on a 64-bit Host
1. On a 64-bit system, compile hello.c into a 64-bit executable with:

gcc hello.c -o hello64

2. Ensure that the resulting executable is a 64-bit binary:

$ file hello64
hello64: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), dynamically linked
 (uses shared libs), for GNU/Linux 2.6.18, not stripped
$ ldd hello64
linux-vdso.so.1 => (0x00007fff242dd000)
libc.so.6 => /lib64/libc.so.6 (0x00007f0721514000)
/lib64/ld-linux-x86-64.so.2 (0x00007f0721893000)

The command file on a 64-bit executable will include ELF 64-bit in its output, and ldd will
list /lib64/libc.so.6 as the main C library linked.

3. On a 64-bit system, compile hello.c into a 32-bit executable with:

gcc -m32 hello.c -o hello32

4. Ensure that the resulting executable is a 32-bit binary:

$ file hello32
hello32: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux), dynamically
 linked (uses shared libs), for GNU/Linux 2.6.18, not stripped
$ ldd hello32
linux-gate.so.1 => (0x007eb000)
libc.so.6 => /lib/libc.so.6 (0x00b13000)
/lib/ld-linux.so.2 (0x00cd7000)

The command file on a 32-bit executable will include ELF 32-bit in its output, and ldd will
list /lib/libc.so.6 as the main C library linked.

If you have not installed the 32-bit supporting libraries you will get an error similar to this for C code:

$ gcc -m32 hello32.c -o hello32
/usr/bin/ld: crt1.o: No such file: No such file or directory
collect2: ld returned 1 exit status

A similar error would be triggered on C++ code:

$ g++ -m32 hello32.cc -o hello32-c++
In file included from /usr/include/features.h:385,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/os_defines.h:39,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/c++config.h:243,
 from /usr/lib/gcc/x86_64-redhat-linux/4.4.4/../../../../include/c++/4.4.4/iostream:39,
 from hello32.cc:1:

Chapter 5. Compiling and Building

82

/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such file or directory

These errors indicate that the supporting 32-bit libraries have not been properly installed as explained
at the beginning of this section.

Also important is to note that building with -m32 will in not adapt or convert a program to resolve any
issues arising from 32/64-bit incompatibilities. For tips on writing portable code and converting from
32-bits to 64-bits, see the paper entitled Porting to 64-bit GNU/Linux Systems in the Proceedings of
the 2003 GCC Developers Summit6.

5.1.7. GCC Documentation

For more information about GCC compilers, refer to the man pages for cpp, gcc, g++, gcj, and
gfortran.

the following online user manuals are also available:

• GCC 4.4.4 Manual7

• GCC 4.4.4 GNU Fortran Manual8

• GCC 4.4.4 GCJ Manual9

• GCC 4.4.4 CPP Manual10

• GCC 4.4.4 GNAT Reference Manual11

• GCC 4.4.4 GNAT User's Guide12

• GCC 4.4.4 GNU OpenMP Manual13

The main site for the development of GCC is gcc.gnu.org14.

5.2. Distributed Compiling

Red Hat Enterprise Linux 6 also supports distributed compiling. This involves transforming one
compile job into many smaller jobs; these jobs are distributed over a cluster of machines, which
speeds up build time (particularly for programs with large codebases). The distcc package provides
this capability.

To set up distributed compiling, install the following packages:

• distcc

• distcc-server

For more information about distributed compiling, refer to the man pages for distcc and distccd.
The following link also provides detailed information about the development of distcc:

6 http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
14 http://gcc.gnu.org

http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gfortran
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcj
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/cpp
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_rm
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_ugn_unw
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/libgomp
http://gcc.gnu.org
http://www.linux.org.uk/~ajh/gcc/gccsummit-2003-proceedings.pdf
http://gcc.gnu.org

Autotools

83

http://code.google.com/p/distcc

5.3. Autotools

GNU Autotools is a suite of command-line tools that allow developers to build applications on different
systems, regardless of the installed packages or even Linux distribution. These tools aid developers
in creating a configure script. This script runs prior to builds and creates the top-level Makefiles
needed to build the application. The configure script may perform tests on the current system,
create additional files, or run other directives as per parameters provided by the builder.

The Autotools suite's most commonly-used tools are:

autoconf
Generates the configure script from an input file (e.g. configure.ac)

automake
Creates the Makefile for a project on a specific system

autoscan
Generates a preliminary input file (i.e. configure.scan), which can be edited to create a final
configure.ac to be used by autoconf

All tools in the Autotools suite are part of the Development Tools group package. You can install
this package group to install the entire Autotools suite, or simply use yum to install any tools in the
suite as you wish.

5.3.1. Autotools Plug-in for Eclipse

The Autotools suite is also integrated into the Eclipse IDE via the Autotools plug-in. This plug-in
provides an Eclipse graphical user interface for Autotools, which is suitable for most C/C++ projects.

As of Red Hat Enterprise Linux 6, this plug-in only supports two templates for new C/C++ projects:

• An empty project

• A "hello world" application

The empty project template is used when importing projects into the C/C++ Development Toolkit that
already support Autotools. Future updates to the Autotools plug-in will include additional graphical user
interfaces (e.g. wizards) for creating shared libraries and other complex scenarios.

The Red Hat Enterprise Linux 6 version of the Autotools plug-in also does not integrate git or
mercurial into Eclipse. As such, Autotools projects that use git repositories will need to be
checked out outside the Eclipse workspace. Afterwards, you can specify the source location for such
projects in Eclipse. Any repository manipulation (e.g. commits, updates) will need to be done via the
command line.

5.3.2. Configuration Script

http://code.google.com/p/distcc

Chapter 5. Compiling and Building

84

The most crucial function of Autotools is the creation of the configure script. This script tests
systems for tools, input files, and other features it can use in order to build the project 15. The
configure script generates a Makefile which allows the make tool to build the project based on the
system configuration.

To create the configure script, first create an input file. Then feed it to an Autotools utility in order to
create the configure script. This input file is typically configure.ac or Makefile.am; the former
is usually processed by autoconf, while the latter is fed to automake.

If a Makefile.am input file is available, the automake utility creates a Makefile template (i.e.
Makefile. in), which may refer to information collected at configuration time. For example, the
Makefile may need to link to a particular library if and only if that library is already installed. When
the configure script runs, automake will use the Makefile. in templates to create a Makefile.

If a configure.ac file is available instead, then autoconf will automatically create the configure
script based on the macros invoked by configure.ac. To create a preliminary configure.ac, use
the autoscan utility and edit the file accordingly.

5.3.3. Autotools Documentation

Red Hat Enterprise Linux 6 includes man pages for autoconf, automake, autoscan and most tools
included in the Autotools suite. In addition, the Autotools community provides extensive documentation
on autoconf and automake on the following websites:

• http://www.gnu.org/software/autoconf/manual/autoconf.html

• http://www.gnu.org/software/autoconf/manual/automake.html

The following is an online book describing the use of Autotools. Although the above online
documentation is the recommended and most up to date information on Autotools, this book is a good
alternative and introduction.

• http://sourceware.org/autobook/

For information on how to create Autotools input files, refer to:

• http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts

• http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake

The following upstream example also illustrates the use of Autotools in a simple hello program:

• http://www.gnu.org/software/hello/manual/hello.html

The Autotools Plug-in For Eclipse whitepaper also provides more detail on the Red Hat Enterprise
Linux 6 release of the Autotools plug-in. This whitepaper also includes a "by example" case study to
walk you through a typical use-case for the plug-in. Refer to the following link for more information:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/
index.html

15 For information about tests that configure can perform, refer to the following link:
http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

http://www.gnu.org/software/autoconf/manual/autoconf.html
http://www.gnu.org/software/autoconf/manual/automake.html
http://sourceware.org/autobook/
http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts
http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake
http://www.gnu.org/software/hello/manual/hello.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Autotools_Plug-In_for_Eclipse/index.html
http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

Eclipse Built-in Specfile Editor

85

5.4. Eclipse Built-in Specfile Editor

The Specfile Editor Plug-in for Eclipse provides useful features to help developers manage .spec
files. This plug-in allows users to leverage several Eclipse GUI features in editing .spec files, such as
auto-completion, highlighting, file hyperlinks, and folding.

In addition, the Specfile Editor Plug-in also integrates the rpmlint tool into the Eclipse interface.
rpmlint is a command-line tool that helps developers detect common RPM package errors. The
richer visualization offered by the Eclipse interface helps developers quickly detect, view, and correct
mistakes reported by rpmlint.

The Specfile Editor for Eclipse is provided by the eclipse-rpm-editor package. For more
information about this plug-in, refer to Specfile Editor User Guide in the Eclipse Help Contents.

86

Chapter 6.

87

Debugging
Useful, well-written software generally goes through several different phases of application
development, allowing ample opportunity for mistakes to be made. Some phases come with their own
set of mechanisms to detect errors. For example, during compilation an elementary semantic analysis
is often performed to make sure objects, such as variables and functions, are adequately described.

The error-checking mechanisms performed during each application development phase aims to catch
simple and obvious mistakes in code. The debugging phase helps to bring more subtle errors to light
that fell through the cracks during routine code inspection.

6.1. Installing Debuginfo Packages

Red Hat Enterprise Linux also provides -debuginfo packages for all architecture-dependent RPMs
included in the operating system. A -debuginfo package contains accurate debugging information
for its corresponding package. For Red Hat Enterprise Linux 6, the debuginfo packages are now
available on a new channel on the Red Hat Network. To install the -debuginfo package of a
package (i.e. typically packagename-debuginfo), first the machine needs to be subscribed to the
corresponding Debuginfo channel. For example, for Red Hat Enterprise Server 6, the corresponding
channel would be Red Hat Enterprise Linux Server Debuginfo (v. 6). Then use the
following command:

debuginfo-install packagename

Note

Attempting to debug a package without having its -debuginfo equivalent installed may fail,
although GDB will try to provide any helpful diagnostics it can.

6.2. GDB

Fundamentally, like most debuggers, GDB manages the execution of compiled code in a very closely
controlled environment. This environment makes possible the following fundamental mechanisms
necessary to the operation of GDB:

• Inspect and modify memory within the code being debugged (e.g. reading and setting variables).

• Control the execution state of the code being debugged, principally whether it's running or stopped.

• Detect the execution of particular sections of code (e.g. stop running code when it reaches a
specified area of interest to the programmer).

• Detect access to particular areas of memory (e.g. stop running code when it accesses a specified
variable).

• Execute portions of code (from an otherwise stopped program) in a controlled manner.

• Detect various programmatic asynchronous events such as signals.

Chapter 6. Debugging

88

The operation of these mechanisms rely mostly on information produced by a compiler. For example,
to view the value of a variable, GDB has to know:

• The location of the variable in memory

• The nature of the variable

This means that displaying a double-precision floating point value requires a very different process
from displaying a string of characters. For something complex like a structure, GDB has to know
not only the characteristics of each individual elements in the structure, but the morphology of the
structure as well.

GDB requires the following items in order to fully function:

Debug Information
Much of GDB's operations rely on a program's debug information. While this information generally
comes from compilers, much of it is necessary only while debugging a program, i.e. it is not
used during the program's normal execution. For this reason, compilers do not always make that
information available by default — GCC, for instance, must be explicitly instructed to provide this
debugging information with the -g flag.

To make full use of GDB's capabilities, it is highly advisable to make the debug information
available first to GDB. GDB can only be of very limited use when run against code with no
available debug information.

Source Code
One of the most useful features of GDB (or any other debugger) is the ability to associate events
and circumstances in program execution with their corresponding location in source code. This
location normally refers to a specific line or series of lines in a source file. This, of course, would
require that a program's source code be available to GDB at debug time.

6.2.1. Simple GDB
GDB literally contains dozens of commands. This section describes the most fundamental ones.

br (breakpoint)

The breakpoint command instructs GDB to halt execution upon reaching a specified point in the
execution. That point can be specified a number of ways, but the most common are just as the line
number in the source file, or the name of a function. Any number of breakpoints can be in effect
simultaneously. This is frequently the first command issued after starting GDB.

r (run)

The run command starts the execution of the program. If run is executed with any arguments,
those arguments are passed on to the executable as if the program has been started normally.
Users normally issue this command after setting breakpoints.

Before an executable is started, or once the executable stops at, for example, a breakpoint, the state
of many aspects of the program can be inspected. The following commands are a few of the more
common ways things can be examined.

Simple GDB

89

p (print)

The print command displays the value of the argument given, and that argument can be almost
anything relevant to the program. Usually, the argument is simply the name of a variable of any
complexity, from a simple single value to a structure. An argument can also be an expression valid
in the current language, including the use of program variables and library functions, or functions
defined in the program being tested.

bt (backtrace)

The backtrace displays the chain of function calls used up until the execution was terminated.
This is useful for investigating serious bugs (such as segmentation faults) with elusive causes.

l (list)

When execution is stopped, the list command shows the line in the source code corresponding
to where the program stopped.

The execution of a stopped program can be resumed in a number of ways. The following are the most
common.

c (continue)

The continue command simply restarts the execution of the program, which will continue to
execute until it encounters a breakpoint, runs into a specified or emergent condition (e.g. an error),
or terminates.

n (next)

Like continue, the next command also restarts execution; however, in addition to the stopping
conditions implicit in the continue command, next will also halt execution at the next sequential
line of code in the current source file.

s (step)

Like next, the step command also halts execution at each sequential line of code in the current
source file. However, if execution is currently stopped at a source line containing a function call,
GDB stops execution after entering the function call (rather than executing it).

fini (finish)

Like the aforementioned commands, the finish command resumes executions, but halts when
execution returns from a function.

Finally, two essential commands:

q (quit)

This terminates the execution.

h (help)

The help command provides access to its extensive internal documentation. The command
takes arguments: help breakpoint (or h br), for example, shows a detailed description

Chapter 6. Debugging

90

of the breakpoint command. Refer to the help output of each command for more detailed
information.

6.2.2. Running GDB

This section will describe a basic execution of GDB, using the following simple program:

hello.c

#include <stdio.h>

char hello[] = { "Hello, World!" };

int
main()
{
 fprintf (stdout, "%s\n", hello);
 return (0);
}

The following procedure illustrates the debugging process in its most basic form.

Procedure 6.1. Debugging a 'Hello World' Program
1. Compile hello.c into an executable with the debug flag set, as in:

gcc -g -o hello hello.c

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run gdb on the hello binary, i.e. gdb hello.

3. After several introductory comments, gdb will display the default GDB prompt:

(gdb)

4. Some things can be done even before execution is started. The variable hello is global, so it can
be seen even before the main procedure starts:

gdb) p hello
$1 = "Hello, World!"
(gdb) p hello[0]
$2 = 72 'H'
(gdb) p *hello
$3 = 72 'H'
(gdb)

Note that the print targets hello[0] and *hello require the evaluation of an expression, as
does, for example, *(hello + 1):

(gdb) p *(hello + 1)

Conditional Breakpoints

91

$4 = 101 'e'

5. Next, list the source:

(gdb) l
1 #include <stdio.h>
2
3 char hello[] = { "Hello, World!" };
4
5 int
6 main()
7 {
8 fprintf (stdout, "%s\n", hello);
9 return (0);
10 }

The list reveals that the fprintf call is on line 8. Apply a breakpoint on that line and resume
the code:

(gdb) br 8
Breakpoint 1 at 0x80483ed: file hello.c, line 8.
(gdb) r
Starting program: /home/moller/tinkering/gdb-manual/hello

Breakpoint 1, main () at hello.c:8
8 fprintf (stdout, "%s\n", hello);

6. Finally, use the “next” command to step past the fprintf call, executing it:

(gdb) n
Hello, World!
9 return (0);

The following sections describe more complex applications of GDB.

6.2.3. Conditional Breakpoints

In many real-world cases, a program may perform its task well during the first few thousand times;
it may then start crashing or encountering errors during its eight thousandth iteration of the task.
Debugging programs like this can be difficult, as it is hard to imagine a programmer with the patience
to issue a continue command thousands of times just to get to the iteration that crashed.

Situations like this are common in real life, which is why GDB allows programmers to attach conditions
to a breakpoint. For example, consider the following program:

simple.c

#include <stdio.h>

main()
{
 int i;

Chapter 6. Debugging

92

 for (i = 0;; i++) {
fprintf (stdout, "i = %d\n", i);
 }
}

To set a conditional breakpoint at the GDB prompt:

(gdb) br 8 if i == 8936
Breakpoint 1 at 0x80483f5: file iterations.c, line 8.
(gdb) r

With this condition, the program execution will eventually stop with the following output:

i = 8931
i = 8932
i = 8933
i = 8934
i = 8935

Breakpoint 1, main () at iterations.c:8
8 fprintf (stdout, "i = %d\n", i);

Inspect the breakpoint information (using info br) to review the breakpoint status:

(gdb) info br
Num Type Disp Enb Address What
1 breakpoint keep y 0x080483f5 in main at iterations.c:8
 stop only if i == 8936
 breakpoint already hit 1 time

6.2.4. Forked Execution

Among the more challenging bugs confronting programmers is where one program (the parent) makes
an independent copy of itself (a fork). That fork then creates a child process which, in turn, fails.
Debugging the parent process may or may not be useful. Often the only way to get to the bug may be
by debugging the child process, but this is not always possible.

The set follow-fork-mode feature is used to overcome this barrier allowing programmers to
follow a a child process instead of the parent process.

set follow-fork-mode parent
The original process is debugged after a fork. The child process runs unimpeded. This is the
default.

set follow-fork-mode child
The new process is debugged after a fork. The parent process runs unimpeded.

show follow-fork-mode
Display the current debugger response to a fork call.

Use the set detach-on-fork command to debug both the parent and the child processes after a
fork, or retain debugger control over them both.

Forked Execution

93

set detach-on-fork on
The child process (or parent process, depending on the value of follow-fork-mode will be
detached and allowed to run independently. This is the default.

set detach-on-fork off
Both processes will be held under the control of GDB. One process (child or parent, depending on
the value of follow-fork-mode) is debugged as usual, while the other is suspended.

show detach-on-fork
Show whether detach-on-fork mode is on or off.

Consider the following program:

fork.c

#include <unistd.h>

int main()
{
 pid_t pid;
 const char *name;

 pid = fork();
 if (pid == 0)
 {
 name = "I am the child";
 }
 else
 {
 name = "I am the parent";
 }
 return 0;
}

This program, compiled with the command gcc -g fork.c -o fork -lpthread and examined
under GDB will show:

gdb ./fork
[...]
(gdb) break main
Breakpoint 1 at 0x4005dc: file fork.c, line 8.
(gdb) run
[...]
Breakpoint 1, main () at fork.c:8
8 pid = fork();
(gdb) next
Detaching after fork from child process 3840.
9 if (pid == 0)
(gdb) next
15 name = "I am the parent";
(gdb) next
17 return 0;
(gdb) print name
$1 = 0x400717 "I am the parent"

GDB followed the parent process and allowed the child process (process 3840) to continue execution.

The following is the same test using set follow-fork-mode child.

(gdb) set follow-fork-mode child

Chapter 6. Debugging

94

(gdb) break main
Breakpoint 1 at 0x4005dc: file fork.c, line 8.
(gdb) run
[...]
Breakpoint 1, main () at fork.c:8
8 pid = fork();
(gdb) next
[New process 3875]
[Thread debugging using libthread_db enabled]
[Switching to Thread 0x7ffff7fd5720 (LWP 3875)]
9 if (pid == 0)
(gdb) next
11 name = "I am the child";
(gdb) next
17 return 0;
(gdb) print name
$2 = 0x400708 "I am the child"
(gdb)

GDB switched to the child process here.

This can be permanent by adding the setting to the appropriate .gdbinit.

For example, if set follow-fork-mode ask is added to ~/.gdbinit, then ask mode becomes
the default mode.

6.2.5. Debugging Individual Threads

GDB has the ability to debug individual threads, and to manipulate and examine them independently.
This functionality is not enabled by default. To do so use set non-stop on and set target-
async on. These can be added to .gdbinit. Once that functionality is turned on, GDB is ready to
conduct thread debugging.

For example, the following program creates two threads. These two threads, along with the original
thread executing main makes a total of three threads.

three-threads.c

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

pthread_t thread;

void* thread3 (void* d)
{
 int count3 = 0;

 while(count3 < 1000){
 sleep(10);
 printf("Thread 3: %d\n", count3++);
 }
 return NULL;
}

void* thread2 (void* d)
{
 int count2 = 0;

 while(count2 < 1000){
 printf("Thread 2: %d\n", count2++);

Debugging Individual Threads

95

 }
 return NULL;
}

int main (){

 pthread_create (&thread, NULL, thread2, NULL);
 pthread_create (&thread, NULL, thread3, NULL);

 //Thread 1
 int count1 = 0;

 while(count1 < 1000){
 printf("Thread 1: %d\n", count1++);
 }

 pthread_join(thread,NULL);
 return 0;
}

Compile this program in order to examine it under GDB.

gcc -g three-threads.c -o three-threads -lpthread
gdb ./three-threads

First set breakpoints on all thread functions; thread1, thread2, and main.

(gdb) break thread3
Breakpoint 1 at 0x4006c0: file three-threads.c, line 9.
(gdb) break thread2
Breakpoint 2 at 0x40070c: file three-threads.c, line 20.
(gdb) break main
Breakpoint 3 at 0x40074a: file three-threads.c, line 30.

Then run the program.

(gdb) run
[...]
Breakpoint 3, main () at three-threads.c:30
30 pthread_create (&thread, NULL, thread2, NULL);
[...]
(gdb) info threads
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:30
(gdb)

Note that the command info threads provides a summary of the program's threads and some
details about their current state. In this case there is only one thread that has been created so far.

Continue execution some more.

(gdb) next
[New Thread 0x7ffff7fd3710 (LWP 4687)]
31 pthread_create (&thread, NULL, thread3, NULL);
(gdb)
Breakpoint 2, thread2 (d=0x0) at three-threads.c:20
20 int count2 = 0;
next
[New Thread 0x7ffff75d2710 (LWP 4688)]
34 int count1 = 0;
(gdb)

Chapter 6. Debugging

96

Breakpoint 1, thread3 (d=0x0) at three-threads.c:9
9 int count3 = 0;
info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) thread3 (d=0x0) at three-threads.c:9
 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-threads.c:20
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:34

Here, two more threads are created. The star indicates the thread currently under focus. Also, the
newly created threads have hit the breakpoint set for them in their initialization functions. Namely,
thread2() and thread3().

To begin real thread debugging, use the thread <thread number> command to switch the focus
to another thread.

(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff7fd3710 (LWP 4687))]#0 thread2 (d=0x0)
 at three-threads.c:20
20 int count2 = 0;
(gdb) list
15 return NULL;
16 }
17
18 void* thread2 (void* d)
19 {
20 int count2 = 0;
21
22 while(count2 < 1000){
23 printf("Thread 2: %d\n", count2++);
24 }

Thread 2 stopped at line 20 in its function thread2().

(gdb) next
22 while(count2 < 1000){
(gdb) print count2
$1 = 0
(gdb) next
23 printf("Thread 2: %d\n", count2++);
(gdb) next
Thread 2: 0
22 while(count2 < 1000){
(gdb) next
23 printf("Thread 2: %d\n", count2++);
(gdb) print count2
$2 = 1
(gdb) info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) thread3 (d=0x0) at three-threads.c:9
* 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-threads.c:23
 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:34
(gdb)

Above, a few lines of thread2 printed the counter count2 and left thread 2 at line 23 as is seen by the
output of 'info threads'.

Now thread3.

(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff75d2710 (LWP 4688))]#0 thread3 (d=0x0)
 at three-threads.c:9
9 int count3 = 0;
(gdb) list

Debugging Individual Threads

97

4
5 pthread_t thread;
6
7 void* thread3 (void* d)
8 {
9 int count3 = 0;
10
11 while(count3 < 1000){
12 sleep(10);
13 printf("Thread 3: %d\n", count3++);
(gdb)

Thread three is a little different in that it has a sleep statement and executes slowly. Think of it as a
representation of an uninteresting IO thread. Since this thread is uninteresting, continue its execution
uninterrupted, using the continue.

(gdb) continue &
(gdb) Thread 3: 0
Thread 3: 1
Thread 3: 2
Thread 3: 3

Take note of the & at the end of the continue. This allows the GDB prompt to return so other
commands can be executed. Using the interrupt, execution can be stopped should thread 3
become interesting again.

(gdb) interrupt
[Thread 0x7ffff75d2710 (LWP 4688)] #3 stopped.
0x000000343f4a6a6d in nanosleep () at ../sysdeps/unix/syscall-template.S:82
82 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

It is also possible to go back to the original main thread and examine it some more.

(gdb) thread 1
[Switching to thread 1 (Thread 0x7ffff7fd5720 (LWP 4620))]#0 main ()
 at three-threads.c:34
34 int count1 = 0;
(gdb) next
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 0
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 1
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 2
36 while(count1 < 1000){
(gdb) print count1
$3 = 3
(gdb) info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) 0x000000343f4a6a6d in nanosleep ()
 at ../sysdeps/unix/syscall-template.S:82
 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-threads.c:23
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:36
(gdb)

Chapter 6. Debugging

98

As can be seen from the output of info threads, the other threads are where they were left, unaffected
by the debugging of thread 1.

6.2.6. Alternative User Interfaces for GDB

GDB uses the command line as its default interface. However, it also has an API called machine
interface (MI). MI allows IDE developers to create other user interfaces to GDB.

Some examples of these interfaces are:

Eclipse (CDT)
A graphical debugger interface integrated with the Eclipse development environment. More
information can be found at the Eclipse website2.

Nemiver
A graphical debugger interface which is well suited to the GNOME Desktop Environment. More
information can be found at the Nemiver website3

Emacs
A GDB interface which is integrated with the emacs. More information can be found at the Emacs
website4

6.2.7. GDB Documentation

For more detailed information about GDB, refer to the GDB manual:

http://sources.redhat.com/gdb/current/onlinedocs/gdb.html

Also, the commands info gdb and man gdb will provide more concise information that is up to date
with the installed version of gdb.

6.3. Variable Tracking at Assignments

Variable Tracking at Assignments (VTA) is a new infrastructure included in GCC used to improve
variable tracking during optimizations. This allows GCC to produce more precise, meaningful, and
useful debugging information for GDB, SystemTap, and other debugging tools.

When GCC compiles code with optimizations enabled, variables are renamed, moved around, or even
removed altogether. As such, optimized compiling can cause a debugger to report that some variables
have been "optimized out". With VTA enabled, optimized code is internally annotated to ensure that
optimization passes to transparently keep track of each variable's value, regardless of whether the
variable is moved or removed.

VTA's benefits are more pronounced when debugging applications with inlined functions. Without
VTA, optimization could completely remove some arguments of an inlined function, preventing the
debugger from inspecting its value. With VTA, optimization will still happen, and appropriate debugging
information will be generated for any missing arguments.

2 http://www.eclipse.org/cdt/
3 http://projects.gnome.org/nemiver/
4 http://www.gnu.org/software/libtool/manual/emacs/GDB-Graphical-Interface.html

http://www.eclipse.org/cdt/
http://projects.gnome.org/nemiver/
http://www.gnu.org/software/libtool/manual/emacs/GDB-Graphical-Interface.html
http://www.gnu.org/software/libtool/manual/emacs/GDB-Graphical-Interface.html
http://sources.redhat.com/gdb/current/onlinedocs/gdb.html
http://www.eclipse.org/cdt/
http://projects.gnome.org/nemiver/
http://www.gnu.org/software/libtool/manual/emacs/GDB-Graphical-Interface.html

Python Pretty-Printers

99

VTA is enabled by default when compiling code with optimizations and debugging information enabled.
To disable VTA during such builds, add the -fno-var-tracking-assignments. In addition, the
VTA infrastructure includes the new gcc option -fcompare-debug. This option tests code compiled
by GCC with debug information and without debug information: the test passes if the two binaries
are identical. This test ensures that executable code is not affected by any debugging options, which
further ensures that there are no hidden bugs in the debug code. Note that -fcompare-debug adds
significant cost in compilation time. Refer to man gcc for details about this option.

For more information about the infrastructure and development of VTA, refer to A Plan to Fix Local
Variable Debug Information in GCC, available at the following link:

http://gcc.gnu.org/wiki/Var_Tracking_Assignments

A slide deck version of this whitepaper is also available at http://people.redhat.com/aoliva/papers/vta/
slides.pdf.

6.4. Python Pretty-Printers

The GDB command print outputs comprehensive debugging information for a target application.
GDB aims to provide as much debugging data as it can to users; however, this means that for highly
complex programs the amount of data can become very cryptic.

In addition, GDB does not provide any tools that help decipher GDB print output. GDB does not
even empower users to easily create tools that can help decipher program data. This makes the
practice of reading and understanding debugging data quite arcane, particularly for large, complex
projects.

For most developers, the only way to customize GDB print output (and make it more meaningful)
is to revise and recompile GDB. However, very few developers can actually do this. Further, this
practice will not scale well, particularly if the developer needs to also debug other programs that are
heterogeneous and contain equally complex debugging data.

To address this, the Red Hat Enterprise Linux 6 version of GDB is now compatible with Python pretty-
printers. This allows the retrieval of more meaningful debugging data by leaving the introspection,
printing, and formatting logic to a third-party Python script.

Compatibility with Python pretty-printers gives you the chance to truly customize GDB output as you
see fit. This makes GDB a more viable debugging solution to a wider range of projects, since you now
have the flexibility to adapt GDB output as needed, and with greater ease. Further, developers with
intimate knowledge of a project and a specific programming language are best qualified in deciding
what kind of output is meaningful, allowing them to improve the usefulness of that output.

The Python pretty-printers implementation allows users to automatically inspect, format, and print
program data according to specification. These specifications are written as rules implemented via
Python scripts. This offers the following benefits:

Safe
To pass program data to a set of registered Python pretty-printers, the GDB development team added
hooks to the GDB printing code. These hooks were implemented with safety in mind: the built-in
GDB printing code is still intact, allowing it to serve as a default fallback printing logic. As such, if
no specialized printers are available, GDB will still print debugging data the way it always did. This

http://gcc.gnu.org/wiki/Var_Tracking_Assignments
http://people.redhat.com/aoliva/papers/vta/slides.pdf
http://people.redhat.com/aoliva/papers/vta/slides.pdf

Chapter 6. Debugging

100

ensures that GDB is backwards-compatible; users who have no need of pretty-printers can still
continue using GDB.

Highly Customizable
This new "Python-scripted" approach allows users to distill as much knowledge as required into
specific printers. As such, a project can have an entire library of printer scripts that parses program
data in a unique manner specific to its user's needs. There is no limit to the number of printers a user
can build for a specific project; what's more, being able to customize debugging data script by script
offers users an easier way to re-use and re-purpose printer scripts — or even a whole library of them.

Easy to Learn
The best part about this approach is its lower barrier to entry. Python scripting is quite easy to learn
(in comparison, at least) and has a large library of free documentation available online. In addition,
most programmers already have basic to intermediate experience in Python scripting, or in scripting in
general.

Here is a small example of a pretty printer. Consider the following C++ program:

fruit.cc

enum Fruits {Orange, Apple, Banana};

class Fruit
{
 int fruit;

 public:
 Fruit (int f)
 {
 fruit = f;
 }
};

int main()
{
 Fruit myFruit(Apple);
 return 0; // line 17
}

This is compiled with the command g++ -g fruit.cc -o fruit. Now, examine this program with
GDB.

gdb ./fruit
[...]
(gdb) break 17
Breakpoint 1 at 0x40056d: file fruit.cc, line 17.
(gdb) run

Breakpoint 1, main () at fruit.cc:17
17 return 0; // line 17
(gdb) print myFruit
$1 = {fruit = 1}

The output of {fruit = 1} is correct because that is the internal representation of 'fruit' in the data
structure 'Fruit'. However, this is not easily read by humans as it is difficult to tell which fruit the integer
1 represents.

Python Pretty-Printers

101

To solve this problem, write the following pretty printer:

fruit.py

class FruitPrinter:
 def __init__(self, val):
 self.val = val

 def to_string (self):
 fruit = self.val['fruit']

 if (fruit == 0):
 name = "Orange"
 elif (fruit == 1):
 name = "Apple"
 elif (fruit == 2):
 name = "Banana"
 else:
 name = "unknown"
 return "Our fruit is " + name

def lookup_type (val):
 if str(val.type) == 'Fruit':
 return FruitPrinter(val)
 return None

gdb.pretty_printers.append (lookup_type)

Examine this printer from the bottom up.

The line gdb.pretty_printers.append (lookup_type) adds the function lookup_type to
GDB's list of printer lookup functions.

The function lookup_type is responsible for examining the type of object to be printed, and returning
an appropriate pretty printer. The object is passed by GDB in the parameter val. val.type is an
attribute which represents the type of the pretty printer.

FruitPrinter is where the actual work is done. More specifically in the to_string function
of that Class. In this function, the integer fruit is retrieved using the python dictionary syntax
self.val['fruit']. Then the name is determined using that value. The string returned by this
function is the string that will be printed to the user.

After creating fruit.py, it must then be loaded into GDB with the following command:

(gdb) python execfile("fruit.py")

The GDB and Python Pretty-Printers whitepaper provides more details on this feature. This whitepaper
also includes details and examples on how to write your own Python pretty-printer as well as how to
import it into GDB. Refer to the following link for more information:

http://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html

http://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html

102

Chapter 7.

103

Profiling
Developers profile programs to focus attention on the areas of the program that have the largest
impact on performance. The types of data collected include what section of the program consumes the
most processor time, and where memory is allocated. Profiling collects data from the actual program
execution. Thus, the quality of the data collect is influenced by the actual tasks being performed by the
program. The tasks performed during profiling should be representative of actual use; this ensures that
problems arising from realistic use of the program are addressed during development.

Red Hat Enterprise Linux 6 includes a number of different tools (Valgrind, OProfile, perf, and
SystemTap) to collect profiling data. Each tool is suitable for performing specific types of profile runs,
as described in the following sections.

7.1. Profiling In Eclipse

To launch a profile run, navigate to Run > Profile. This will open the Profile As dialogue, from which
you can select a tool for a profile run.

Figure 7.1. Profile As

To configure each tool for a profile run, navigate to Run > Profile Configuration. This will open the
Profile Configuration menu.

Chapter 7. Profiling

104

Figure 7.2. Profile Configuration

For more information on configuring and performing a profile run with each tool in Eclipse, refer to
Section 7.2.3, “Valgrind Plug-in for Eclipse ”, and Section 7.3.3, “OProfile Plug-in For Eclipse ”.

7.2. Valgrind

Valgrind is an instrumentation framework for building dynamic analysis tools that can be used to
profile applications in detail. Valgrind tools are generally used to automatically detect many memory
management and threading problems. The Valgrind suite also includes tools that allow the building of
new profiling tools as needed.

Valgrind provides instrumentation for user-space binaries to check for errors, such as the use of
uninitialized memory, improper allocation/freeing of memory, and improper arguments for systemcalls.
Its profiling tools can be used by normal users on most binaries; however, compared to other profilers,
Valgrind profile runs are significantly slower. To profile a binary, Valgrind rewrites its executable and
instruments the rewritten binary. Valgrind's tools are most useful for looking for memory-related
issues in user-space programs; it is not suitable for debugging time-specific issues or kernel-space
instrumentation/debugging.

Previously, Valgrind did not support IBM System z architecture. However, as of 6.1, this support has
been added, meaning Valgrind now supports all hardware architectures that are supported by Red Hat
Enterprise Linux 6.x.

Valgrind Tools

105

7.2.1. Valgrind Tools

The Valgrind suite is composed of the following tools:

memcheck

This tool detects memory management problems in programs by checking all reads from
and writes to memory and intercepting all system calls to malloc, new, free, and delete.
Memcheck is perhaps the most used Valgrind tool, as memory management problems can be
difficult to detect using other means. Such problems often remain undetected for long periods,
eventually causing crashes that are difficult to diagnose.

cachegrind

Cachegrind is a cache profiler that accurately pinpoints sources of cache misses in code by
performing a detailed simulation of the I1, D1 and L2 caches in the CPU. It shows the number
of cache misses, memory references, and instructions accruing to each line of source code;
Cachegrind also provides per-function, per-module, and whole-program summaries, and can
even show counts for each individual machine instructions.

callgrind

Like cachegrind, callgrind can model cache behavior. However, the main purpose of
callgrind is to record callgraphs data for the executed code.

massif

Massif is a heap profiler; it measures how much heap memory a program uses, providing
information on heap blocks, heap administration overheads, and stack sizes. Heap profilers
are useful in finding ways to reduce heap memory usage. On systems that use virtual memory,
programs with optimized heap memory usage are less likely to run out of memory, and may be
faster as they require less paging.

helgrind

In programs that use the POSIX pthreads threading primitives, Helgrind detects synchronisation
errors. Such errors are:

• Misuses of the POSIX pthreads API

• Potential deadlocks arising from lock ordering problems

• Data races (i.e. accessing memory without adequate locking)

Valgrind also allows you to develop your own profiling tools. In line with this, Valgrind includes the
lackey tool, which is a sample that can be used as a template for generating your own tools.

7.2.2. Using Valgrind

The valgrind package and its dependencies install all the necessary tools for performing a Valgrind
profile run. To profile a program with Valgrind, use:

valgrind --tool=toolname program

Chapter 7. Profiling

106

Refer to Section 7.2.1, “Valgrind Tools” for a list of arguments for toolname. In addition to the suite
of Valgrind tools, none is also a valid argument for toolname; this argument allows you to run a
program under Valgrind without performing any profiling. This is useful for debugging or benchmarking
Valgrind itself.

You can also instruct Valgrind to send all of its information to a specific file. To do so, use the option --
log-file=filename. For example, to check the memory usage of the executable file hello and
send profile information to output, use:

valgrind --tool=memcheck --log-file=output hello

Refer to Section 7.2.4, “Valgrind Documentation” for more information on Valgrind, along with other
available documentation on the Valgrind suite of tools.

7.2.3. Valgrind Plug-in for Eclipse

The Valgrind plug-in for Eclipse (documented herein) integrates several Valgrind tools into Eclipse.
This allows Eclipse users to seamlessly include profiling capabilities into their workflow. At present, the
Valgrind plug-in for Eclipse supports three Valgrind tools:

• Memcheck

• Massif

• Cachegrind

The Valgrind plug-in for Eclipse is provided by the eclipse-valgrind package. For more
information about this plug-in, refer to Valgrind Integration User Guide in the Eclipse Help Contents.

7.2.4. Valgrind Documentation

For more extensive information on Valgrind, refer to man valgrind. Red Hat Enterprise Linux 6 also
provides a comprehensive Valgrind Documentation book, available as PDF and HTML in:

• file:///usr/share/doc/valgrind-version/valgrind_manual.pdf

• file:///usr/share/doc/valgrind-version/html/index.html

The Valgrind Integration User Guide in the Eclipse Help Contents also also provides detailed
information on the setup and usage of the Valgrind plug-in for Eclipse. This guide is provided by the
eclipse-valgrind package.

7.3. OProfile

OProfile is a system-wide Linux profiler, capable of running at low overhead. It consists of a kernel
driver and a daemon for collecting raw sample data, along with a suite of tools for parsing that data
into meaningful information. OProfile is generally used by developers to determine which sections of
code consume the most amount of CPU time, and why.

During a profile run, OProfile uses the processor's performance monitoring hardware. Valgrind rewrites
the binary of an application, and in turn instruments it. OProfile, on the other hand,simply profiles a
running application as-is. It sets up the performance monitoring hardware to take a sample every x
number of events (e.g. cache misses or branch instructions). Each sample also contains information
on where it occurred in the program.

OProfile Tools

107

OProfile's profiling methods consume less resources than Valgrind. However, OProfile requires root
privileges. OProfile is useful for finding "hot-spots" in code, and looking for their causes (e.g. poor
cache performance, branch mispredictions).

Using OProfile involves starting the OProfile daemon (oprofiled), running the program to be
profiled, collecting the system profile data, and parsing it into a more understandable format. OProfile
provides several tools for every step of this process.

7.3.1. OProfile Tools

The most useful OProfile commands include the following:

opcontrol

This tool is used to start/stop the OProfile daemon and configure a profile session.

opreport

The opreport command outputs binary image summaries, or per-symbol data, from OProfile
profiling sessions.

opannotate

The opannotate command outputs annotated source and/or assembly from the profile data of an
OProfile session.

oparchive

The oparchive command generates a directory populated with executable, debug, and OProfile
sample files. This directory can be moved to another machine (via tar), where it can be analyzed
offline.

opgprof

Like opreport, the opgprof command outputs profile data for a given binary image from an
OProfile session. The output of opgprof is in gprof format.

For a complete list of OProfile commands, refer to man oprofile. For detailed information on
each OProfile command, refer to its corresponding man page. Refer to Section 7.3.4, “OProfile
Documentation” for other available documentation on OProfile.

7.3.2. Using OProfile

The oprofile package and its dependencies install all the necessary utilities for performing an
OProfile profile run. To instruct the OProfile to profile all the application running on the system and
to group the samples for the shared libraries with the application using the library, run the following
command as root:

opcontrol --no-vmlinux --separate=library --start

You can also start the OProfile daemon without collecting system data. To do so, use the option --
start-daemon instead. The --stop option halts data collection, while the --shutdown terminates
the OProfile daemon.

Chapter 7. Profiling

108

Use opreport, opannotate, or opgprof to display the collected profiling data. By default, the data
collected by the OProfile daemon is stored in /var/lib/oprofile/samples/.

7.3.3. OProfile Plug-in For Eclipse
The OProfile suite of tools provide powerful call profiling capabilities; as a plug-in, these capabilities
are well ported into the Eclipse user interface. The OProfile Plug-in provides the following benefits:

Targeted Profiling
The OProfile Plug-in will allow Eclipse users to profile a specific binary, include related shared
libraries/kernel modules, and even exclude binaries. This produces very targeted, detailed usage
results on each binary, function, and symbol, down to individual line numbers in the source code.

User Interface Fully Integrated into CDT
The plug-in displays enriched OProfile results through Eclipse, just like any other plug-in. Double-
clicking on a source line in the results brings users directly to the corresponding line in the Eclipse
editor. This allows users to build, profile, and edit code through a single interface, making profiling
a convenient experience for Eclipse users. In addition, profile runs are launched and configured the
same way as C/C++ applications within Eclipse.

Fully Customizable Profiling Options
The Eclipse interface allows users to configure their profile run using all options available in the
OProfile command-line utility. The plug-in supports event configuration based on processor debugging
registers (i.e. counters), as well as interrupt-based profiling for kernels or processors that don't support
hardware counters.

Ease of Use
The OProfile Plug-in provides generally useful defaults for all options, usable for a majority of profiling
runs. In addition, it also features a "one-click profile" that executes a profile run using these defaults.
Users can profile applications from start to finish, or select specific areas of code through a manual
control dialog.

The OProfile plug-in for Eclipse is provided by the eclipse-oprofile package. For more
information about this plug-in, refer to OProfile Integration User Guide in the Eclipse Help Contents
(also provided by eclipse-profile).

7.3.4. OProfile Documentation

For a more extensive information on OProfile, refer to man oprofile. Red Hat Enterprise
Linux 6 also provides two comprehensive guides to OProfile in file:///usr/share/doc/
oprofile-version/:

OProfile Manual
A comprehensive manual with detailed instructions on the setup and use of OProfile is found at
file:///usr/share/doc/oprofile-version/oprofile.html

OProfile Internals
Documentation on the internal workings of OProfile, useful for programmers interested
in contributing to the OProfile upstream, can be found at file:///usr/share/doc/
oprofile-version/internals.html

SystemTap

109

The OProfile Integration User Guide in the Eclipse Help Contents also provides detailed information
on the setup and usage of the OProfile plug-in for Eclipse. This guide is provided by the eclipse-
oprofile package.

7.4. SystemTap

SystemTap is a useful instrumentation platform for probing running processes and kernel activity on
the Linux system. To execute a probe:

1. Write SystemTap scripts that specify which system events (e.g. virtual file system reads, packet
transmissions) should trigger specified actions (e.g. print, parse, or otherwise manipulate data).

2. SystemTap translates the script into a C program, which it compiles into a kernel module.

3. SystemTap loads the kernel module to perform the actual probe.

SystemTap scripts are useful for monitoring system operation and diagnosing system issues with
minimal intrusion into the normal operation of the system. You can quickly instrument running system
test hypotheses without having to recompile and re-install instrumented code. To compile a SystemTap
script that probes kernel-space, SystemTap uses information from three different kernel information
packages:

• kernel-variant-devel-version

• kernel-variant-debuginfo-version

• kernel-variant-debuginfo-common-arch-version

Difference between Red Hat Enterprise Linux 5 and 6

The kernel information package in Red Hat Enterprise Linux 6 is now named kernel-variant-
debuginfo-common-arch-version. It was originally kernel-variant-debuginfo-
common-version in Red Hat Enterprise Linux 5.

These kernel information packages must match the kernel to be probed. In addition, to compile
SystemTap scripts for multiple kernels, the kernel information packages of each kernel must also be
installed.

An important new feature has been added as of Red Hat Enterprise Linux 6.1: the --remote option.
This allows users to build the SystemTap module locally, and then execute it remotely via SSH. The
syntax to use this is --remote [USER@]HOSTNAME; set the execution target to the specified SSH
host, optionally using a different username. This option may be repeated to target multiple execution
targets. Passes 1-4 are completed locally as normal to build the scrip, and then pass 5 copies the
module to the target and runs it.

The following sections describe other new SystemTap features available in the Red Hat Enterprise
Linux 6 release.

7.4.1. SystemTap Compile Server

Chapter 7. Profiling

110

SystemTap in Red Hat Enterprise Linux 6 supports a compile server and client deployment. With this
setup, the kernel information packages of all client systems in the network are installed on just one
compile server host (or a few). When a client system attempts to compile a kernel module from a
SystemTap script, it remotely accesses the kernel information it needs from the centralized compile
server host.

A properly configured and maintained SystemTap compile server host offers the following benefits:

• The system administrator can verify the integrity of kernel information packages before making the
packages available to users.

• The identity of a compile server can be authenticated using the Secure Socket Layer (SSL). SSL
provides an encrypted network connection that prevents eavesdropping or tampering during
transmission.

• Individual users can run their own servers and authorize them for their own use as trusted.

• System administrators can authorize one or more servers on the network as trusted for use by all
users.

• A server that has not been explicitly authorized is ignored, preventing any server impersonations
and similar attacks.

7.4.2. SystemTap Support for Unprivileged Users

For security purposes, users in an enterprise setting are rarely given privileged (i.e. root or sudo)
access to their own machines. In addition, full SystemTap functionality should also be restricted to
privileged users, as this can provide the ability to completely take control of a system.

SystemTap in Red Hat Enterprise Linux 6 features a new option to the SystemTap client: --
unprivileged. This option allows an unprivileged user to run stap. Of course, several restrictions
apply to unprivileged users that attempt to run stap.

Note

An unprivileged user is a member of the group stapusr but is not a member of the group
stapdev (and is not root).

Before loading any kernel modules created by unprivileged users, SystemTap verifies the integrity
of the module using standard digital (cryptographic) signing techniques. Each time the --
unprivileged option is used, the server checks the script against the constraints imposed for
unprivileged users. If the checks are successful, the server compiles the script and signs the resulting
module using a self-generated certificate. When the client attempts to load the module, staprun first
verifies the signature of the module by checking it against a database of trusted signing certificates
maintained and authorized by root.

Once a signed kernel module is successfully verified, staprun is assured that:

• The module was created using a trusted systemtap server implementation.

• The module was compiled using the --unprivileged option.

 SSL and Certificate Management

111

• The module meets the restrictions required for use by an unprivileged user.

• The module has not been tampered with since it was created.

7.4.3. SSL and Certificate Management

SystemTap in Red Hat Enterprise Linux 6 implements authentication and security via certificates and
public/private key pairs. It is the responsibility of the system administrator to add the credentials (i.e.
certificates) of compile servers to a database of trusted servers. SystemTap uses this database to
verify the identity of a compile server that the client attempts to access. Likewise, SystemTap also
uses this method to verify kernel modules created by compile servers using the --unprivileged
option.

7.4.3.1. Authorizing Compile Servers for Connection

The first time a compile server is started on a server host, the compile server automatically generates
a certificate. This certificate verifies the compile server's identity during SSL authentication and module
signing.

In order for clients to access the compile server (whether on the same server host or from a client
machine), the system administrator must add the compile server's certificate to a database of trusted
servers. Each client host intending to use compile servers maintains such a database. This allows
individual users to customize their database of trusted servers, which can include a list of compile
servers authorized for their own use only.

7.4.3.2. Authorizing Compile Servers for Module Signing (for
Unprivileged Users)

Unprivileged users can only load signed, authorized SystemTap kernel modules. For modules to
be recognized as such, they have to be created by a compile server whose certificate appears in a
database of trusted signers; this database must be maintained on each host where the module will be
loaded.

7.4.3.3. Automatic Authorization

Servers started using the stap-server initscript are automatically authorized to receive connections
from all clients on the same host.

Servers started by other means are automatically authorized to receive connections from clients on
the same host run by the user who started the server. This was implemented with convenience in
mind; users are automatically authorized to connect to a server they started themselves, provided that
both client and server are running on the same host.

Whenever root starts a compile server, all clients running on the same host automatically recognize
the server as authorized. However, Red Hat advises that you refrain from doing so.

Similarly, a compile server initiated through stap-server is automatically authorized as a trusted
signer on the host in which it runs. If the compile server was initiated through other means, it is not
automatically authorized as such.

Chapter 7. Profiling

112

7.4.4. SystemTap Documentation

For more detailed information about SystemTap, refer to the following books (also provided by Red
Hat):

• SystemTap Beginner's Guide

• SystemTap Tapset Reference

• SystemTap Language Reference (documentation supplied by IBM)

The SystemTap Beginner's Guide and SystemTap Tapset Reference are also available locally when
you install the systemtap package:

• file:///usr/share/doc/systemtap-version/SystemTap_Beginners_Guide/
index.html

• file:///usr/share/doc/systemtap-version/SystemTap_Beginners_Guide.pdf

• file:///usr/share/doc/systemtap-version/tapsets/index.html

• file:///usr/share/doc/systemtap-version/tapsets.pdf

The Section 7.4.1, “SystemTap Compile Server”, Section 7.4.2, “SystemTap Support for Unprivileged
Users”, and Section 7.4.3, “ SSL and Certificate Management” sections are excerpts from the
SystemTap Support for Unprivileged Users and Server Client Deployment whitepaper. This whitepaper
also provides more details on each feature, along with a case study to help illustrate their application
in a real-world environment.

7.5. Performance Counters for Linux (PCL) Tools and perf

Performance Counters for Linux (PCL) is a new kernel-based subsystem that provides a framework
for collecting and analyzing performance data. These events will vary based on the performance
monitoring hardware and the software configuration of the system. Red Hat Enterprise Linux 6
includes this kernel subsystem to collect data and the user-space tool perf to analyze the collected
performance data.

The PCL subsystem can be used to measure hardware events, including retired instructions and
processor clock cycles. It can also measure software events, including major page faults and context
switches. For example, PCL counters can compute the Instructions Per Clock (IPC) from a process's
counts of instructions retired and processor clock cycles. A low IPC ratio indicates the code makes
poor use of the CPU. Other hardware events can also be used to diagnose poor CPU performance.

Performance counters can also be configured to record samples. The relative frequency of samples
can be used to identify which regions of code have the greatest impact on performance.

7.5.1. Perf Tool Commands

Useful perf commands include the following:

perf stat

Using Perf

113

This perf command provides overall statistics for common performance events, including
instructions executed and clock cycles consumed. Options allow selection of events other than the
default measurement events.

perf record

This perf command records performance data into a file which can be later analyzed using perf
report.

perf report

This perf command reads the performance data from a file and analyzes the recorded data.

perf list

This perf command lists the events available on a particular machine. These events will vary
based on the performance monitoring hardware and the software configuration of the system.

Use perf help to obtain a complete list of perf commands. To retrieve man page information on
each perf command, use perf help command.

7.5.2. Using Perf

Using the basic PCL infrastructure for collecting statistics or samples of program execution is relatively
straightforward. This section provides simple examples of overall statistics and sampling.

To collect statistics on make and its children, use the following command:

perf stat -- make all

The perf command will collect a number of different hardware and software counters. It will then print
the following information:

Performance counter stats for 'make all':

 244011.782059 task-clock-msecs # 0.925 CPUs
 53328 context-switches # 0.000 M/sec
 515 CPU-migrations # 0.000 M/sec
 1843121 page-faults # 0.008 M/sec
 789702529782 cycles # 3236.330 M/sec
 1050912611378 instructions # 1.331 IPC
 275538938708 branches # 1129.203 M/sec
 2888756216 branch-misses # 1.048 %
 4343060367 cache-references # 17.799 M/sec
 428257037 cache-misses # 1.755 M/sec

 263.779192511 seconds time elapsed

The perf tool can also record samples. For example, to record data on the make command and its
children, use:

perf record -- make all

This will print out the file in which the samples are stored, along with the number of samples collected:

Chapter 7. Profiling

114

[perf record: Woken up 42 times to write data]
[perf record: Captured and wrote 9.753 MB perf.data (~426109 samples)]

You can then analyze perf.data to determine the relative frequency of samples. The report output
includes the command, object, and function for the samples. Use perf report to output an analysis
of perf.data. For example, the following command produces a report of the executable that
consumes the most time:

perf report --sort=comm

The resulting output:

Samples: 1083783860000
#
Overhead Command
........
#
 48.19% xsltproc
 44.48% pdfxmltex
 6.01% make
 0.95% perl
 0.17% kernel-doc
 0.05% xmllint
 0.05% cc1
 0.03% cp
 0.01% xmlto
 0.01% sh
 0.01% docproc
 0.01% ld
 0.01% gcc
 0.00% rm
 0.00% sed
 0.00% git-diff-files
 0.00% bash
 0.00% git-diff-index

The column on the left shows the relative frequency of the samples. This output shows that make
spends most of this time in xsltproc and the pdfxmltex. To reduce the time for the make to
complete, focus on xsltproc and pdfxmltex. To list of the functions executed by xsltproc, run:

perf report -n --comm=xsltproc

This would generate:

comm: xsltproc
Samples: 472520675377
#
Overhead Samples Shared Object Symbol
........
#
 45.54%215179861044 libxml2.so.2.7.6 [.] xmlXPathCmpNodesExt
 11.63%54959620202 libxml2.so.2.7.6 [.] xmlXPathNodeSetAdd__internal_alias
 8.60%40634845107 libxml2.so.2.7.6 [.] xmlXPathCompOpEval
 4.63%21864091080 libxml2.so.2.7.6 [.] xmlXPathReleaseObject
 2.73%12919672281 libxml2.so.2.7.6 [.] xmlXPathNodeSetSort__internal_alias
 2.60%12271959697 libxml2.so.2.7.6 [.] valuePop
 2.41%11379910918 libxml2.so.2.7.6 [.] xmlXPathIsNaN__internal_alias
 2.19%10340901937 libxml2.so.2.7.6 [.] valuePush__internal_alias

ftrace

115

7.6. ftrace

The ftrace framework provides users with several tracing capabilities, accessible through an
interface much simpler than SystemTap's. This framework uses a set of virtual files in the debugfs file
system; these files enable specific tracers. The ftrace function tracer simply outputs each function
called in the kernel in real time; other tracers within the ftrace framework can also be used to
analyze wakeup latency, task switches, kernel events, and the like.

You can also add new tracers for ftrace, making it a flexible solution for analyzing kernel events.
The ftrace framework is useful for debugging or analyzing latencies and performance issues that
take place outside of user-space. Unlike other profilers documented in this guide, ftrace is a built-in
feature of the kernel.

7.6.1. Using ftrace

The Red Hat Enterprise Linux 6 kernels have been configured with the CONFIG_FTRACE=y option.
This option provides the interfaces needed by ftrace. To use ftrace, mount the debugfs file
system as follows:

mount -t debugfs nodev /sys/kernel/debug

All the ftrace utilities are located in /sys/kernel/debug/tracing/. View the /sys/kernel/
debug/tracing/available_tracers file to find out what tracers are available for your kernel:

cat /sys/kernel/debug/tracing/available_tracers

power wakeup irqsoff function sysprof sched_switch initcall nop

To use a specific tracer, write it to /sys/kernel/debug/tracing/current_tracer. For
example, wakeup traces and records the maximum time it takes for the highest-priority task to be
scheduled after the task wakes up. To use it:

echo wakeup > /sys/kernel/debug/tracing/current_tracer

To start or stop tracing, write to /sys/kernel/debug/tracing/tracing_on, as in:

echo 1 > /sys/kernel/debug/tracing/tracing_on (enables tracing)

echo 0 > /sys/kernel/debug/tracing/tracing_on (disables tracing)

The results of the trace can be viewed from the following files:

/sys/kernel/debug/tracing/trace
This file contains human-readable trace output.

/sys/kernel/debug/tracing/trace_pipe
This file contains the same output as /sys/kernel/debug/tracing/trace, but is meant to
be piped into a command. Unlike /sys/kernel/debug/tracing/trace, reading from this file
consumes its output.

7.6.2. ftrace Documentation

The ftrace framework is fully documented in the following files:

Chapter 7. Profiling

116

• ftrace - Function Tracer: file:///usr/share/doc/kernel-doc-version/Documentation/
trace/ftrace.txt

• function tracer guts: file:///usr/share/doc/kernel-doc-version/Documentation/
trace/ftrace-design.txt

Chapter 8.

117

Documentation Tools
Red Hat Enterprise Linux 6 has two documentation tools available to include documentation with a
project. These are Publican and Doxygen.

8.1. Publican
Publican a program is used to publish and process documentation through DocBook XML. In the
process of publishing books, it checks the XML to ensure it is valid and in a publishable standard. It is
particularly useful for publishing the documentation accompanying a newly created application.

8.1.1. Commands
Publican has a vast number of commands and actions available, all of which can be found in the --
help or --man pages. The most common ones are:

build
Converts the XML files into other formats more suitable for documentation (PDF, HTML, HTML-
single, for example).

create
Creates a new book, including all the required files as discussed in Section 8.1.3, “Files”.

create_brand
Creates a new brand, allowing all books to look the same, as discussed in Section 8.1.6, “Brands”.

package
Packages the files of a book into an RPM ready to distribute.

8.1.2. Create a New Document
Use the publican create command to create a new document including all the required files.

There are a number of options available to append to the publican create. These are:

--help
Prints a list of accepted options for the publican create command.

--name Doc_Name
Set the name of the book. Keep in mind that the title must contain no spaces.

--lang Language_Code
If this is not set, the default is en-US. However, The --lang option sets the xml_lang in the
publican.cfg file and creates a directory with this name in the document directory.

--version version
Set the version number of the product the book is about.

--product Product_Name
Set the name of the product the book is about. Keep in mind that this must contain no spaces.

--brand brand
Set the name of a brand to use to keep the look of the documents consistant.

Refer to --help for more options.

Chapter 8. Documentation Tools

118

Remember to change into the directory the book is to be created in before running publican
create lest the files and directories be added to the user's home directory.

8.1.3. Files
When a book is made, a number of files are created in the book's directory. These files are required
for the book to be built properly and should not be deleted. They are, however, required to be edited
for links (such as chapters) to work, as well as to contain the correct information regarding authors and
titles etc. These files are:

publican.cfg
This file configures the build options and always includes the parameters xml_lang (the
language the book is in, en-US for example), type (the type of document, a book or a set, for
example), and brand (the branding the document uses, found here: Section 8.1.6, “Brands”.
Red Hat, for example.). There are a number of optional parameters but these should be used
cautiously as they can cause problems further on in areas like translation. A full list of these
advanced parameters can be found in the Publican User Guide. The publican.cfg file is
unlikely to be edited much beyond the initial creation.

book_info.xml
This file is essentially the template of the book. It contains information such as the title, subtitle,
author, publication number, and the book's ID number. It also contains the basic Publican
information printed at the beginning of each publication with information on the notes, cautions,
and warnings as well as a basic stylistic guide. This file will be edited often as every time a book is
updated the publication number needs to be incremented.

Author_Group.xml
This file is used to store information about the authors and contributors. Once initially set up it is
unlikely further editing will be needed unless a change of authorship occurs.

Chapter.xml
This file is an example of what the actual content will be. It is created as a place holder but unless
it is linked in the Doc_Name.xml (below) it will not appear in the actual book. When writing
content for the publication, new XML files are created, named appropriately (ch-publican.xml, for
example) and linked in Doc_Name.xml. When the book is built, the content of this file will form
the content of the book. This specific file is unlikely to ever be edited but others like it will be edited
constantly as content is changed, updated, added to or removed.

Doc_Name.xml
This file is essentially the contents page of the publication. It contains a list of links to the various
chapters a book is to contain. Naturally it won't actually be called 'Doc_Name' but will have
whatever the title of the publication is in it's place (Developer_Guide.xml, for example). This will
only be edited when new chapters are added, removed or rearranged. This must remain the same
as Doc_Name.ent or the book will not build.

Doc_Name.ent
This file contains a list of local entities. By default YEAR is set to the current year and HOLDER has
a reminder to place the copyright owner's name there. As with Doc_Name.xml, this file will not
be called 'Doc_Name' but will be replaced with the title of the document (Developer_Guide.ent,
for example). This is only likely to be edited once at the beginning of publication or if the copyright
owner changes. This must remain the same as Doc_Name.xml or the book will not build.

Revision_History.xml
When publican package is run, the first XML file containing a <revhistory> tag is used to
build the RPM revision history.

Building a Document

119

8.1.3.1. Adding Media to Documentation
Occasionally it may become necessary to add various media to a document in order to illustrate what
is being explained.

Images
The images folder is created by publican in the document's directory. Store any images used in the
document here. Then when entering an image into the document, link to the image inside the images
directory (./images/image1.png, for example).

Code Examples
As time passes and technology changes, a project's documentation will need to be updated to reflect
differences in code. To make this easier, create individual files for each code example in a preferred
editor, then save them in a folder called extras in the document's directory. Then, when entering
the code sample into the document, link to the file and the folder it is in. This way an example used in
several places can be updated only once, and rather than search through a document looking for a
specific item to change, all the code examples are located in the one place, saving time and effort.

Arbitrary Files
On occasion there may be a need for files not attached to the documentation to be bundled with the
RPM (video tutorials, for example). Adding these files to a directory called files in the publication's
directory will allow them to be added to the RPM when the book is compiled.

To link to any of these files, use the following XML:

<xi:include parse="text" href="extras/fork/fork1.c" xmlns:xi="http://www.w3.org/2001/
XInclude" />

8.1.4. Building a Document
In the root directory, first run a test build to ensure that all the XML is correct and acceptable by
typing publican build --formats=chosen_format --langs=chosen_language. For
example, to build a document in US English and as a single HTML page, run publican build --
formats=html-single --langs=en-US. Provided there are no errors the book will be built into
the root directory where the pages can be viewed to see if it has the look required. It is recommended
to do this regularly in order to make troubleshooting as easy as possible.

--novalid Command

When creating a build to test for any bugs in the XML code, sometimes it may be useful to use
the --novalid option. This skips over any cross-references and links that point to files or
sections of the document that do not yet exist. Instead they are shown as three question marks
(???).

There are a number of different formats a document can be published in. These are:

html
An ordinary HTML page with links to new pages for new chapters and sections.

Chapter 8. Documentation Tools

120

html-single
One long HTML page where the links to new chapters and sections at the top of the page directing
the user further down the page, rather than to new page.

html-desktop
One long HTML page where the links to new chapters and sections are in a panel on the left side
of the document, directing the user further down the page, rather than to a new page.

man
A man page for Linux, UNIX, and other similar operating systems.

pdf
A PDF file.

test
The XML is validated without actually creating a file for viewing.

txt
A single text file.

epub
An e-book in EPUB format.

eclipse
An Eclipse help plug-in.

8.1.5. Packaging a Publication
Once the documentation is complete and can be built with no errors, run publican package --
lang=chosen_language. This will output SRPM packages to tmp/rpm in the document's directory,
and binary RPM packages will go to tmp/rpm/noarch in the document's directory. By default, these
packages are named productname-title-productnumber-[web]-language-edition-
pubsnumber.[build_target].noarch.file_extension with the information for each of these
sections coming from publican.cfg.

8.1.6. Brands
Brands are used in a similar way as templates in that they create a level of consistency in appearance,
with aspects like matching logos, images and color schemes, across a range of documents. This can
be particularly useful when producing several books for the same application or the same bundle of
applications.

In order to create a new brand, it must have a name and a language. Run publican
create_brand --name=brand --lang=language_code. This will create a folder called
publican-brand and place it in the publication's directory. This folder contains the following files:

COPYING
Part of an SRPM package and containing the copyright license and details.

defaults.cfg
Provides default values for the parameters that can be set in publican.cfg. Specifications from
this file are applied first before applying those in the publican.cfg file. Therefore, values in the
publican.cfg file over ride those in the defaults.cfg file. It is best used for aspects that are
routinely used throughout the documents but still allows writers to change settings.

Building a Website

121

overrides.cfg
Also provides values for the parameters that can be set in publican-brand.spec.
Specifications from this file are applied last, thus overriding both the defaults.cfg and the
publican.cfg. It is best used for aspects the writers are not allowed to change.

publican.cfg
This file is similar to the publican.cfg file for a publication in that it configures basic information
for the brand, such as version, release number and brand name.

publican-brand.spec
This file is used by the RPM Package Manager to package the publication into an RPM.

README
Part of an SRPM package and providing a brief description of the package.

A subdirectory, named by the language code, is also placed in this directory and contains the following
files:

Feedback.xml
This is generated by default to allow readers to leave feedback. Customize it to contain the
relevant contact details or a bug reporting process.

Legal_Notice.xml:
Contains copyright information. Edit it to change the details of the chosen copyright license.

Two more subdirectories are within this directory. The images subdirectory contains a number
of images of both raster (PNG) and vector (SVG) formats and serve as place holders for various
navigation icons that can be changed simply by replacing the images. The css folder contains
overrides.css, which sets the visual style for the brand, overriding those in common.css.

In order to package the new brand ready for distribution, use the publican package command.
By default this creates source RPM packages (SRPM Packages) but it can also create binary
RPM packages using the option --binary. Packages are named publican-brand-version-
release.[build_target].[noarch].file_extension with the required parameters taken
from the publican.cfg file.

File Extensions

SRPM packages have the file extension .src.rpm while binary RPM packages have the file
extension .rpm

Binary RPM packages include [build_target].noarch before the file extension, where
[build_target] represents the operating system and version that the package is built for as set by
the os_ver parameter in the publican.cfg file. The noarch element specifies that the package can
be installed on any system, regardless of the system architecture.

8.1.7. Building a Website
Publican can also build websites to manage documentation. This is mostly useful when only one
person is maintaining the documentation, but where a team is working on the documentation Publican
can generate RPM packages of documentation to install on a web server. The website created
consists of a homepage, product and version description pages, and the pages for the documentation.

Chapter 8. Documentation Tools

122

In the publication's root directory, Publican creates a configuration file, an SQLite database file, and
two subdirectories. There could be many configuration files depending on how many languages the
documentation is published in, with a new subdirectory for each language.

Refer to Section 8.1.8, “Documentation” for more information.

8.1.8. Documentation
Publican has comprehensive --man, --help and --help_actions pages accessed from the
terminal.

For information on XML including the different tags available, see the DocBook guide, DocBook: the
definitive guide by Norman Walsh and Leonard Muellner, found here: http://www.docbook.org/tdg/en/
html/docbook and specifically Part II: Reference1 for a list of all the tags and brief instructions on how
to use them.

There is also the comprehensive Publican User Guide accessed online at http://
jfearn.fedorapeople.org/en-US/index.html or installed locally with yum install publican-doc.

8.2. Doxygen
Doxygen is a documentation tool that creates reference material both online in HTML and offline
in Latex. It does this from a set of documented source files which makes it easy to keep the
documentation consistent and correct with the source code.

8.2.1. Doxygen Supported Output and Languages
Doxygen has support for output in:

• RTF (MS Word)

• PostScript

• Hyperlinked PDF

• Compressed HTML

• Unix man pages

Doxygen supports the following programming languages:

• C

• C++

• C#

• Objective -C

• IDL

• Java

• VHDL

1 http://www.docbook.org/tdg/en/html/part2.html

http://www.docbook.org/tdg/en/html/docbook
http://www.docbook.org/tdg/en/html/docbook
http://www.docbook.org/tdg/en/html/part2.html
http://jfearn.fedorapeople.org/en-US/index.html
http://jfearn.fedorapeople.org/en-US/index.html
http://www.docbook.org/tdg/en/html/part2.html

Getting Started

123

• PHP

• Python

• Fortran

• D

8.2.2. Getting Started
Doxygen uses a configuration file to determine its settings, therefore it is paramount that this
be created correctly. Each project needs its own configuration file. The most painless way to
create the configuration file is with the command doxygen -g config-file. This creates a
template configuration file that can be easily edited. The variable config-file is the name of the
configuration file. If it is committed from the command it is simply called Doxyfile by default. Another
useful option while creating the configuration file is the use of a minus sign (-) as the file name. This is
useful for scripting as it will cause Doxygen to attempt to read the configuration file from standard input
(stdin).

The configuration file consists of a number of variables and tags, similar to a simple Makefile. For
example:

TAGNAME = VALUE1 VALUE2...

For the most part these can be left alone but should the need arise to edit them refer to the
configuration page2 of the Doxygen documentation website for an extensive explanation of all the tags
available. There is also a GUI interface called doxywizard. If this is the preferred method of editing
then documentation for this function can be found on the Doxywizard usage page3 of the Doxygen
documentation website.

There are eight tags that are useful to become familiar with.

INPUT
For small projects consisting mainly of C or C++ source and header files there is no need to change
things. However, if the project is large and consists of a source directory or tree, then assign the root
directory or directories to the INPUT tag.

FILE_PATTERNS
File patterns (for example, *.cpp or *.h) can be added to this tag allowing only files that match one
of the patterns to be parsed.

RECURSIVE
Setting this to yes will allow recursive parsing of a source tree.

EXCLUDE and EXCLUDE_PATTERNS
These are used to further fine-tune the files that are parsed by adding file patterns to avoid. For
example, to omit all test directories from a source tree, use EXCLUDE_PATTERNS = */test/*.

2 http://www.stack.nl/~dimitri/doxygen/config.html
3 http://www.stack.nl/~dimitri/doxygen/doxywizard_usage.html

http://www.stack.nl/~dimitri/doxygen/config.html
http://www.stack.nl/~dimitri/doxygen/doxywizard_usage.html
http://www.stack.nl/~dimitri/doxygen/config.html
http://www.stack.nl/~dimitri/doxygen/doxywizard_usage.html

Chapter 8. Documentation Tools

124

EXTRACT_ALL
When this is set to yes, doxygen will pretend that everything in the source files is documented to give
an idea of how a fully documented project would look. However, warnings regarding undocumented
members will not be generated in this mode; set it back to no when finished to correct this.

SOURCE_BROWSER and INLINE_SOURCES
By setting the SOURCE_BROWSER tag to yes doxygen will generate a cross-reference to analyze a
piece of software's definition in its source files with the documentation existing about it. These sources
can also be included in the documentation by setting INLINE_SOURCES to yes.

8.2.3. Running Doxygen
Running doxygen config-file creates html, rtf, latex, xml, and / or man directories in
whichever directory doxygen is started in, containing the documentation for the corresponding filetype.

HTML OUTPUT
This documentation can be viewed with a HTML browser that supports cascading style sheets (CSS),
as well as DHTML and Javascript for some sections. Point the browser (for example, Mozilla, Safari,
Konqueror, or Internet Explorer 6) to the index.html in the html directory.

LaTeX OUTPUT
Doxygen writes a Makefile into the latex directory in order to make it easy to first compile the
Latex documentation. To do this, use a recent teTeX distribution. What is contained in this directory
depends on whether the USE_PDFLATEX is set to no. Where this is true, typing make while in
the latex directory generates refman.dvi. This can then be viewed with xdvi or converted to
refman.ps by typing make ps. Note that this requires dvips.

There are a number of commands that may be useful. The command make ps_2on1 prints two
pages on one physical page. It is also possible to convert to a PDF if a ghostscript interpreter is
installed by using the command make pdf. Another valid command is make pdf_2on1. When doing
this set PDF_HYPERLINKS and USE_PDFLATEX tags to yes as this will cause Makefile will only
contain a target to build refman.pdf directly.

RTF OUTPUT
This file is designed to import into Microsoft Word by combining the RTF output into a single file:
refman.rtf. Some information is encoded using fields but this can be shown by selecting all (CTRL
+A or Edit -> select all) and then right-click and select the toggle fields option from the drop down
menu.

XML OUTPUT
The output into the xml directory consists of a number of files, each compound gathered by doxygen,
as well as an index.xml. An XSLT script, combine.xslt, is also created that is used to combine
all the XML files into a single file. Along with this, two XML schema files are created, index.xsd for
the index file, and compound.xsd for the compound files, which describe the possible elements, their
attributes, and how they are structured.

MAN PAGE OUTPUT
The documentation from the man directory can be viewed with the man program after ensuring the
manpath has the correct man directory in the man path. Be aware that due to limitations with the man
page format, information such as diagrams, cross-references and formulas will be lost.

Documenting the Sources

125

8.2.4. Documenting the Sources
There are three main steps to document the sources.

1. First, ensure that EXTRACT_ALL is set to no so warnings are correctly generated and
documentation is built properly. This allows doxygen to create documentation for documented
members, files, classes and namespaces.

2. There are two ways this documentation can be created:

 A special documentation block
This comment block, containing additional marking so Doxygen knows it is part of the
documentation, is in either C or C++. It consists of a brief description, or a detailed
description. Both of these are optional. What is not optional, however, is the in body
description. This then links together all the comment blocks found in the body of the method
or function.

Concurrent brief or detailed descriptions

While more than one brief or detailed descriptions is allowed, this is not recommended
as the order is not specified.

The following will detail the ways in which a comment block can be marked as a detailed
description:

• C-style comment block, starting with two asterisks (*) in the JavaDoc style.

/**
 * ... documentation ...
 */

• C-style comment block using the Qt style, consisting of an exclamation mark (!) instead of
an extra asterisks.

/*!
 * ... documentation ...
 */

• The beginning asterisks on the documentation lines can be left out in both cases if that is
preferred.

• A blank beginning and end line in C++ also acceptable, with either three forward slashes or
two forward slashes and an exclamation mark.

///
/// ... documentation
///

or

Chapter 8. Documentation Tools

126

//!
//! ... documentation ...
//!

• Alternatively, in order to make the comment blocks more visible a line of asterisks or
forward slashes can be used.

///
/// ... documentation ...
///

or

/**//**
 * ... documentation ...
 ***/

Note that the two forwards slashes at the end of the normal comment block start a special
comment block.

There are three ways to add a brief description to documentation.

• To add a brief description use \brief above one of the comment blocks. This brief section
ends at the end of the paragraph and any further paragraphs are the detailed descriptions.

/*! \brief brief documentation.
 * brief documentation.
 *
 * detailed documentation.
 */

• By setting JAVADOC_AUTOBRIEF to yes, the brief description will only last until the first dot
followed by a space or new line. Consequentially limiting the brief description to a single
sentence.

/** Brief documentation. Detailed documentation continues * from here.
 */

This can also be used with the above mentioned three-slash comment blocks (///).

• The third option is to use a special C++ style comment, ensuring this does not span more
than one line.

/// Brief documentation.
/** Detailed documentation. */

or

Documenting the Sources

127

//! Brief documentation.

//! Detailed documentation //! starts here

The blank line in the above example is required to separate the brief description and the
detailed description, and JAVADOC_AUTOBRIEF needs to be set to no.

Examples of how a documented piece of C++ code using the Qt style can be found on the
Doxygen documentation website4

It is also possible to have the documentation after members of a file, struct, union, class, or
enum. To do this add a < marker in the comment block.\

int var; /*!< detailed description after the member */

Or in a Qt style as:

int var; /**< detailed description after the member */

or

int var; //!< detailed description after the member
 //!<

or

int var; ///< detailed description after the member
 ///<

For brief descriptions after a member use:

int var; //!< brief description after the member

or

int var; ///< brief description after the member

Examples of these and how the HTML is produced can be viewed on the Doxygen
documentation website5

Documentation at other places
While it is preferable to place documentation in front of the code it is documenting, at times
it is only possible to put it in a different location, especially if a file is to be documented; after
all it is impossible to place the documentation in front of a file. This is best avoided unless it is
absolutely necessary as it can lead to some duplication of information.

To do this it is important to have a structural command inside the documentation block.
Structural commands start with a backslash (\) or an at-sign (@) for JavaDoc and are followed
by one or more parameters.

http://www.stack.nl/~dimitri/doxygen/docblocks.html
http://www.stack.nl/~dimitri/doxygen/docblocks.html
http://www.stack.nl/~dimitri/doxygen/docblocks.html

Chapter 8. Documentation Tools

128

/*! \class Test
 \brief A test class.

 A more detailed description of class.
 */

In the above example the command \class is used. This indicates that the comment block
contains documentation for the class 'Test'. Others are:

• \struct: document a C-struct

• \union: document a union

• \enum: document an enumeration type

• \fn: document a fcuntion

• \var: document a variable, typedef, or enum value

• \def: document a #define

• \typedef: document a type definition

• \file: document a file

• \namespace: document a namespace

• \package: document a Java package

• \interface: document an IDL interface

3. Next, the contents of a special documentation block is parsed before being written to the HTML
and / Latex output directories. This includes:

1. Special commands are executed.

2. Any white space and asterisks (*) are removed.

3. Blank lines are taken as new paragraphs.

4. Words are linked to their corresponding documentation. Where the word is preceded by a
percent sign (%) the percent sign is removed and the word remains.

5. Where certain patterns are found in the text, links to members are created. Examples of this
can be found on the automatic link generation page6 on the Doxygen documentation website.

6. When the documentation is for Latex, HTML tags are interpreted and converted to Latex
equivalents. A list of supported HTML tags can be found on the HTML commands page7 on
the Doxygen documentation website.

8.2.5. Resources
More information can be found on the Doxygen website.

• Doxygen homepage8

• Doxygen introduction9

http://www.stack.nl/~dimitri/doxygen/autolink.html
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/starting.html

Resources

129

• Doxygen documentation10

• Output formats11

http://www.stack.nl/~dimitri/doxygen/docblocks.html
http://www.stack.nl/~dimitri/doxygen/output.html

130

131

Appendix A. Revision History
Revision 1-15 Fri Dec 02 2011 Jacquelynn East jeast@redhat.com

Release for GA of Red Hat Enterprise Linux 6.2

Revision 1-8 Mon Nov 14 2011 Jacquelynn East jeast@redhat.com
BZ#753162, BZ#753159, BZ#753156, BZ#752135, BZ#752106 fixed typos and broken links

Revision 1-6 Wed Nov 09 2011 Jacquelynn East jeast@redhat.com
BZ#752135, BZ#752117, BZ#752105, BZ#752102: fix errors in code examples, replaced dead link

Revision 1-4 Wed Nov 02 2011 Jacquelynn East jeast@redhat.com
BZ#722512 Editing C/C++ Source Code section added.

Revision 1-1 Wed Oct 26 2011 Jacquelynn East jeast@redhat.com
BZ#722520 Eclipse section rearranged and empty chapters added ready to be filled

Revision 1-1 Tue Sep 27 2011 Jacquelynn East jeast@redhat.com
BZ#561718 minor edits

Revision 0-86 Fri Sep 02 2011 Jacquelynn East jeast@redhat.com
BZ#561718

Revision 0-83 Tue Aug 30 2011 Jacquelynn East jeast@redhat.com
BZ#561715

Revision 0-82 Mon Aug 15 2011 Jacquelynn East jeast@redhat.com
BZ#561716

Revision 0-81 Thu Aug 04 2011 Jacquelynn East jeast@redhat.com
BZ#642399

Revision 0-80 Fri Jul 29 2011 Jacquelynn East jeast@redhat.com
BZ#722516 Drop section 7.5

Revision 0-76 Mon Jun 20 2011 Jacquelynn East jeast@redhat.com

mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com

Appendix A. Revision History

132

CVS section edited, compatibility sections returned BZ#653200, openssl compatibilities added to
table BZ#642399

Revision 0-72 Mon May 30 2011 Jacquelynn East jeast@redhat.com
BZ#614289, CVS draft complete BZ#561716

Revision 0-71 Tue May 24 2011 Jacquelynn East jeast@redhat.com
BZ#614289

Revision 0-69 Thu May 19 2011 Jacquelynn East jeast@redhat.com
6.1 GA

Revision 0-68 Thu May 19 2011 Jacquelynn East jeast@redhat.com
BZ#5617325 final Publican edits

Revision 0-67 Wed May 18 2011 Jacquelynn East jeast@redhat.com
BZ#702561

Revision 0-66 Tue May 17 2011 Jacquelynn East jeast@redhat.com
BZ#561732 sections added and removed

Revision 0-65 Tue May 17 2011 Jacquelynn East jeast@redhat.com
BZ#702388, BZ#703128, BZ#69357, BZ#561732 publican edits

Revision 0-60 Mon May 16 2011 Jacquelynn East jeast@redhat.com
BZ#614291, BZ#701986, BZ#702414

Revision 0-55 Mon May 09 2011 Jacquelynn East jeast@redhat.com
BZ#702417, BZ#701986, BZ#702414, BZ#702412, BZ#702396, BZ#702388

Revision 0-50 Wed Apr 27 2011 Jacquelynn East jeast@redhat.com
BZ#561732 website sections added

Revision 0-45 Mon Mar 28 2011 Jacquelynn East jeast@redhat.com
BZ#702417, BZ#701986, BZ#702414, BZ#702412, BZ#702396, BZ#702388

Revision 0-41 Fri Feb 04 2011 Jacquelynn East jeast@redhat.com

mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com

133

BZ#561731: Doxygen content

Revision 0-40 Tue Jan 25 2011 Jacquelynn East jeast@redhat.com
BZ#642397: NSS Stack content

Revision 0-39 Tue Dec 21 2010 Jacquelynn East jeast@redhat.com
BZ#561732: Publican content

Revision 0-38 Tue Dec 14 2010 Jacquelynn East jeast@redhat.com
BZ#662822: Minor typo

Revision 0-37 Tue Dec 07 2010 Jacquelynn East jeast@redhat.com
Minor edits

Revision 0-36 Thu Dec 02 2010 Jacquelynn East jeast@redhat.com
Edited forked execution section

Revision 0-35 Thu Dec 02 2010 Jacquelynn East jeast@redhat.com
Edited documentation section

Revision 0-34 Wed Dec 01 2010 Jacquelynn East jeast@redhat.com
Rewrote ch-debugging.xml

Revision 0-33 Mon Nov 29 2010 Michael Hideo-Smith mhideo@redhat.com
Initialized

Revision 0-32 Mon Nov 15 2010 Don Domingo ddomingo@redhat.com
BZ#653200, removed content possibly inconsistent w/ stuff in App Compat Spec, to be re-added
later

Revision 0-31 Mon Nov 14 2010 Don Domingo ddomingo@redhat.com
BZ#653200: adding backup copy of section containing compatibility content

mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:jeast@redhat.com
mailto:mhideo@redhat.com
mailto:ddomingo@redhat.com
mailto:ddomingo@redhat.com

134

135

Index
Symbols
.spec file

specfile Editor
compiling and building, 85

A
added locales

GNU C Library
libraries and runtime support, 53

advantages
Python pretty-printers

debugging, 99
Akonadi

KDE Development Framework
libraries and runtime support, 64

architecture, KDE4
KDE Development Framework

libraries and runtime support, 63
authorizing compile servers for connection

SSL and certificate management
SystemTap, 111

automatic authorization
SSL and certificate management

SystemTap, 111
Autotools

compiling and building, 83

B
backtrace

tools
GNU debugger, 89

Boost
libraries and runtime support, 58

boost-doc
Boost

libraries and runtime support, 61
breakpoint

fundamentals
GNU debugger, 88

breakpoints (conditional)
GNU debugger, 91

build integration
development toolkits

Eclipse, 8
building

compiling and building,

C
C++ Standard Library, GNU

libraries and runtime support, 56
C++0x, added support for

GNU C++ Standard Library
libraries and runtime support, 56

C/C++ Development Toolkit
development toolkits

Eclipse, 7
cachegrind

tools
Valgrind, 105

callgrind
tools

Valgrind, 105
CDT

development toolkits
Eclipse, 7

certificate management
SSL and certificate management

SystemTap, 111
checking functions (new)

GNU C Library
libraries and runtime support, 55

Code Completion
libhover

libraries and runtime support, 23
Command Group Availability Tab

integrated development environment
Eclipse, 19

commands
fundamentals

GNU debugger, 88
profiling

Valgrind, 105
tools

Performance Counters for Linux (PCL) and
perf, 112

commonly-used commands
Autotools

compiling and building, 83
compatibility

libraries and runtime support, 48
compile server

SystemTap, 109
compiling a C Hello World program

usage
GCC, 76

compiling a C++ Hello World program
usage

GCC, 77
compiling and building

Autotools, 83
commonly-used commands, 83
configuration script, 83
documentation, 84
plug-in for Eclipse, 83
templates (supported), 83

Index

136

distributed compiling, 82
GNU Compiler Collection, 71

documentation, 82
required packages, 76
usage, 76

introduction,
required packages, 82
specfile Editor, 85

plug-in for Eclipse, 85
conditional breakpoints

GNU debugger, 91
configuration script

Autotools
compiling and building, 83

configuring keyboard shortcuts
integrated development environment

Eclipse, 16
connection authorization (compile servers)

SSL and certificate management
SystemTap, 111

Console View
user interface

Eclipse, 12
Contents (Help Contents)

Help system
Eclipse, 4

continue
tools

GNU debugger, 89
Customize Perspective Menu

integrated development environment
Eclipse, 17

D
debugfs file system

profiling
ftrace, 115

debugging
debuginfo-packages, 87

installation, 87
GNU debugger, 87

fundamental mechanisms, 87
GDB, 87
requirements, 88

introduction,
Python pretty-printers, 99

advantages, 99
debugging output (formatted), 99
documentation, 101
pretty-printers, 99

variable tracking at assignments (VTA), 98
debugging a Hello World program

usage
GNU debugger, 90

debugging output (formatted)
Python pretty-printers

debugging, 99
debuginfo-packages

debugging, 87
default

user interface
Eclipse, 9

development toolkits
Eclipse, 7

distributed compiling
compiling and building, 82

documentation
Autotools

compiling and building, 84
Boost

libraries and runtime support, 61
GNU C Library

libraries and runtime support, 55
GNU C++ Standard Library

libraries and runtime support, 57
GNU Compiler Collection

compiling and building, 82
GNU debugger, 98
Java

libraries and runtime support, 67
KDE Development Framework

libraries and runtime support, 64
OProfile

profiling, 108
Perl

libraries and runtime support, 69
profiling

ftrace, 115
Python

libraries and runtime support, 66
Python pretty-printers

debugging, 101
Qt

libraries and runtime support, 62
Ruby

libraries and runtime support, 68
SystemTap

profiling, 112
Valgrind

profiling, 106
DTK (development toolkits)

development toolkits
Eclipse, 7

Dynamic Help
Help system

Eclipse, 6

137

E
Eclipse

development toolkits, 7
build integration, 8
C/C++ Development Toolkit, 7
CDT, 7
DTK (development toolkits), 7
hot patch, 8
Java Development Toolkit, 7
JDT, 7

Help system, 4
Contents (Help Contents), 4
Dynamic Help, 6
Menu (Help Menu), 5
Workbench User Guide, 6

integrated development environment,
Command Group Availability Tab, 19
configuring keyboard shortcuts, 16
Customize Perspective Menu, 17
IDE (integrated development environment),

Keyboard Shortcuts Menu, 16
menu (Main Menu),
Menu Visibility Tab, 18
perspectives,
Quick Access Menu, 15
Shortcuts Tab, 20
Tool Bar Visibility, 18
useful hints, 15
user interface, 9
workbench,

introduction,
libhover

libraries and runtime support, 21
profiling, 103
projects, 1

New Project Wizard, 2
technical overview, 1
workspace (overview), 1
Workspace Launcher, 1

user interface
Console View, 12
default, 9
Editor, 10
Outline Window, 12
Problems View, 14
Project Explorer, 11
quick fix (Problems View), 14
Tasks Properties, 13
Tasks View, 12
tracked comments, 13
View Menu (button), 12

Editor

user interface
Eclipse, 10

execution (forked)
GNU debugger, 92

F
feedback

contact information for this manual, xii
finish

tools
GNU debugger, 89

forked execution
GNU debugger, 92

formatted debugging output
Python pretty-printers

debugging, 99
framework (ftrace)

profiling
ftrace, 115

ftrace
profiling, 115

debugfs file system, 115
documentation, 115
framework (ftrace), 115
usage, 115

function tracer
profiling

ftrace, 115
fundamental commands

fundamentals
GNU debugger, 88

fundamental mechanisms
GNU debugger

debugging, 87
fundamentals

GNU debugger, 88

G
gcc

GNU Compiler Collection
compiling and building, 71

GCC C
usage

compiling a C Hello World program, 76
GCC C++

usage
compiling a C++ Hello World program, 77

GDB
GNU debugger

debugging, 87
glibc

libraries and runtime support, 53
GNU C Library

Index

138

libraries and runtime support, 53
GNU C++ Standard Library

libraries and runtime support, 56
GNU Compiler Collection

compiling and building, 71
GNU debugger

conditional breakpoints, 91
debugging, 87
documentation, 98
execution (forked), 92
forked execution, 92
fundamentals, 88

breakpoint, 88
commands, 88
halting an executable, 89
inspecting the state of an executable, 88
starting an executable, 88

interfaces (CLI and machine), 98
thread and threaded debugging, 94
tools, 88

backtrace, 89
continue, 89
finish, 89
help, 89
list, 89
next, 89
print, 89
quit, 89
step, 89

usage, 90
debugging a Hello World program, 90

variations and environments, 98

H
halting an executable

fundamentals
GNU debugger, 89

header files
GNU C Library

libraries and runtime support, 53
helgrind

tools
Valgrind, 105

help
getting help, xii
tools

GNU debugger, 89
Help system

Eclipse, 4
hints

integrated development environment
Eclipse, 15

host (compile server host)
compile server

SystemTap, 109
hot patch

development toolkits
Eclipse, 8

Hover Help
libhover

libraries and runtime support, 23

I
IDE (integrated development environment)

integrated development environment
Eclipse,

indexing
libhover

libraries and runtime support, 21
inspecting the state of an executable

fundamentals
GNU debugger, 88

installation
debuginfo-packages

debugging, 87
integrated development environment

Eclipse,
interfaces (added new)

GNU C Library
libraries and runtime support, 54

interfaces (CLI and machine)
GNU debugger, 98

introduction
compiling and building,
debugging,
Eclipse,
libraries and runtime support,
profiling,

SystemTap, 109
ISO 14482 Standard C++ library

GNU C++ Standard Library
libraries and runtime support, 56

ISO C++ TR1 elements, added support for
GNU C++ Standard Library

libraries and runtime support, 56

J
Java

libraries and runtime support, 66
Java Development Toolkit

development toolkits
Eclipse, 7

JDT
development toolkits

Eclipse, 7

139

K
KDE Development Framework

libraries and runtime support, 63
KDE4 architecture

KDE Development Framework
libraries and runtime support, 63

kdelibs-devel
KDE Development Framework

libraries and runtime support, 63
kernel information packages

profiling
SystemTap, 109

Keyboard Shortcuts Menu
integrated development environment

Eclipse, 16
KHTML

KDE Development Framework
libraries and runtime support, 63

KIO
KDE Development Framework

libraries and runtime support, 63
KJS

KDE Development Framework
libraries and runtime support, 63

KNewStuff2
KDE Development Framework

libraries and runtime support, 64
KXMLGUI

KDE Development Framework
libraries and runtime support, 64

L
libhover

libraries and runtime support, 21
libraries

runtime support,
libraries and runtime support

Boost, 58
boost-doc, 61
documentation, 61
message passing interface (MPI), 59
meta-package, 58
MPICH2, 59
new libraries, 60
Open MPI, 59
sub-packages, 58
updates, 59

C++ Standard Library, GNU, 56
compatibility, 48
glibc, 53
GNU C Library, 53

added new interfaces, 54
checking functions (new), 55

documentation, 55
header files, 53
interfaces (added new), 54
Linux-specific interfaces (added), 54
locales (added), 53
updates, 53

GNU C++ Standard Library, 56
C++0x, added support for, 56
documentation, 57
ISO 14482 Standard C++ library, 56
ISO C++ TR1 elements, added support for,
56
libstdc++-devel, 56
libstdc++-docs, 57
Standard Template Library, 56
updates, 56

introduction,
Java, 66

documentation, 67
KDE Development Framework, 63

Akonadi, 64
documentation, 64
KDE4 architecture, 63
kdelibs-devel, 63
KHTML, 63
KIO, 63
KJS, 63
KNewStuff2, 64
KXMLGUI, 64
Phonon, 63
Plasma, 63
Solid, 63
Sonnet, 63
Strigi, 64
Telepathy, 63

libhover, 21
Code Completion, 23
Eclipse, 21
Hover Help, 23
indexing, 21
usage, 22

libstdc++, 56
Perl, 68

documentation, 69
module installation, 68
updates, 68

Python, 65
documentation, 66
updates, 65

Qt, 61
documentation, 62
meta object compiler (MOC), 61
Qt Creator, 62
qt-doc, 62

Index

140

updates, 61
widget toolkit, 61

Ruby, 67
documentation, 68
ruby-devel, 67

libstdc++
libraries and runtime support, 56

libstdc++-devel
GNU C++ Standard Library

libraries and runtime support, 56
libstdc++-docs

GNU C++ Standard Library
libraries and runtime support, 57

Linux-specific interfaces (added)
GNU C Library

libraries and runtime support, 54
list

tools
GNU debugger, 89
Performance Counters for Linux (PCL) and
perf, 113

locales (added)
GNU C Library

libraries and runtime support, 53

M
machine interface

GNU debugger, 98
massif

tools
Valgrind, 105

mechanisms
GNU debugger

debugging, 87
memcheck

tools
Valgrind, 105

Menu (Help Menu)
Help system

Eclipse, 5
menu (Main Menu)

integrated development environment
Eclipse,

Menu Visibility Tab
integrated development environment

Eclipse, 18
message passing interface (MPI)

Boost
libraries and runtime support, 59

meta object compiler (MOC)
Qt

libraries and runtime support, 61
meta-package

Boost

libraries and runtime support, 58
module installation

Perl
libraries and runtime support, 68

module signing (compile server authorization)
SSL and certificate management

SystemTap, 111
MPICH2

Boost
libraries and runtime support, 59

N
new extensions

GNU C++ Standard Library
libraries and runtime support, 57

new libraries
Boost

libraries and runtime support, 60
New Project Wizard

projects
Eclipse, 2

next
tools

GNU debugger, 89

O
opannotate

tools
OProfile, 107

oparchive
tools

OProfile, 107
opcontrol

tools
OProfile, 107

Open MPI
Boost

libraries and runtime support, 59
opgprof

tools
OProfile, 107

opreport
tools

OProfile, 107
OProfile

profiling, 106
documentation, 108
usage, 107

tools, 107
opannotate, 107
oparchive, 107
opcontrol, 107
opgprof, 107

141

opreport, 107
oprofiled

OProfile
profiling, 107

Outline Window
user interface

Eclipse, 12

P
perf

profiling
Performance Counters for Linux (PCL) and
perf, 112

usage
Performance Counters for Linux (PCL) and
perf, 113

Performance Counters for Linux (PCL) and perf
profiling, 112

subsystem (PCL), 112
tools, 112

commands, 112
list, 113
record, 113
report, 113
stat, 112

usage, 113
perf, 113

Perl
libraries and runtime support, 68

perspectives
integrated development environment

Eclipse,
Phonon

KDE Development Framework
libraries and runtime support, 63

Plasma
KDE Development Framework

libraries and runtime support, 63
plug-in for Eclipse

Autotools
compiling and building, 83

profiling
Valgrind, 106

specfile Editor
compiling and building, 85

pretty-printers
Python pretty-printers

debugging, 99
print

tools
GNU debugger, 89

Problems View
user interface

Eclipse, 14

Profile As
Eclipse

profiling, 103
Profile Configuration Menu

Eclipse
profiling, 103

profiling
Eclipse, 103

Profile As, 103
Profile Configuration Menu, 103

ftrace, 115
introduction,
OProfile, 106

oprofiled, 107
Performance Counters for Linux (PCL) and
perf, 112
SystemTap, 109
Valgrind, 104

Project Explorer
user interface

Eclipse, 11
projects

Eclipse, 1
Python

libraries and runtime support, 65
Python pretty-printers

debugging, 99

Q
Qt

libraries and runtime support, 61
Qt Creator

Qt
libraries and runtime support, 62

qt-doc
Qt

libraries and runtime support, 62
Quick Access Menu

integrated development environment
Eclipse, 15

quick fix (Problems View)
user interface

Eclipse, 14
quit

tools
GNU debugger, 89

R
record

tools
Performance Counters for Linux (PCL) and
perf, 113

report

Index

142

tools
Performance Counters for Linux (PCL) and
perf, 113

required packages
compiling and building, 82
GNU Compiler Collection

compiling and building, 76
profiling

SystemTap, 109
requirements

GNU debugger
debugging, 88

Ruby
libraries and runtime support, 67

ruby-devel
Ruby

libraries and runtime support, 67
runtime support

libraries,

S
scripts (SystemTap scripts)

profiling
SystemTap, 109

setup
libhover

libraries and runtime support, 22
Shortcuts Tab

integrated development environment
Eclipse, 20

signed modules
SSL and certificate management

SystemTap, 111
unprivileged user support

SystemTap, 110
Solid

KDE Development Framework
libraries and runtime support, 63

Sonnet
KDE Development Framework

libraries and runtime support, 63
specfile Editor

compiling and building, 85
SSL and certificate management

SystemTap, 111
Standard Template Library

GNU C++ Standard Library
libraries and runtime support, 56

starting an executable
fundamentals

GNU debugger, 88
stat

tools

Performance Counters for Linux (PCL) and
perf, 112

step
tools

GNU debugger, 89
Strigi

KDE Development Framework
libraries and runtime support, 64

sub-packages
Boost

libraries and runtime support, 58
subsystem (PCL)

profiling
Performance Counters for Linux (PCL) and
perf, 112

supported templates
Autotools

compiling and building, 83
SystemTap

compile server, 109
host (compile server host), 109

profiling, 109
documentation, 112
introduction, 109
kernel information packages, 109
required packages, 109
scripts (SystemTap scripts), 109

SSL and certificate management, 111
automatic authorization, 111
connection authorization (compile servers),
111
module signing (compile server
authorization), 111

unprivileged user support, 110
signed modules, 110

T
Tasks Properties

user interface
Eclipse, 13

Tasks View
user interface

Eclipse, 12
technical overview

projects
Eclipse, 1

Telepathy
KDE Development Framework

libraries and runtime support, 63
templates (supported)

Autotools
compiling and building, 83

thread and threaded debugging
GNU debugger, 94

143

Tool Bar Visibility
integrated development environment

Eclipse, 18
tools

GNU debugger, 88
OProfile, 107
Performance Counters for Linux (PCL) and
perf, 112
profiling

Valgrind, 105
Valgrind, 105

tracked comments
user interface

Eclipse, 13

U
unprivileged user support

SystemTap, 110
unprivileged users

unprivileged user support
SystemTap, 110

updates
Boost

libraries and runtime support, 59
GNU C Library

libraries and runtime support, 53
GNU C++ Standard Library

libraries and runtime support, 56
Perl

libraries and runtime support, 68
Python

libraries and runtime support, 65
Qt

libraries and runtime support, 61
usage

GNU Compiler Collection
compiling and building, 76

GNU debugger, 90
fundamentals, 88

libhover
libraries and runtime support, 22

Performance Counters for Linux (PCL) and
perf, 113
profiling

ftrace, 115
OProfile, 107

Valgrind
profiling, 105

useful hints
integrated development environment

Eclipse, 15
user interface

integrated development environment
Eclipse, 9

V
Valgrind

profiling, 104
commands, 105
documentation, 106
plug-in for Eclipse, 106
tools, 105
usage, 105

tools
cachegrind, 105
callgrind, 105
helgrind, 105
massif, 105
memcheck, 105

variable tracking at assignments (VTA)
debugging, 98

variations and environments
GNU debugger, 98

View Menu (button)
user interface

Eclipse, 12

W
widget toolkit

Qt
libraries and runtime support, 61

workbench
integrated development environment

Eclipse,
Workbench User Guide

Help system
Eclipse, 6

workspace (overview)
projects

Eclipse, 1
Workspace Launcher

projects
Eclipse, 1

144

	Developer Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Chapter 1. Introduction to Eclipse
	1.1. Understanding Eclipse Projects
	1.2. Help In Eclipse
	1.3. Development Toolkits

	Chapter 2. The Eclipse Integrated Development Environment (IDE)
	2.1. User Interface
	2.2. Useful Hints
	2.2.1. The quick access menu
	2.2.2. libhover Plug-in
	2.2.2.1. Setup and Usage

	Chapter 3. Collaborating
	3.1. Concurrent Versions System (CVS)
	3.1.1. CVS Overview
	3.1.2. Typical scenario
	3.1.3. CVS Documentation

	3.2. Apache Subversion (SVN)
	3.2.1. Installation
	3.2.2. SVN repository
	3.2.3. Importing Data
	3.2.4. Working Copies
	3.2.5. Committing changes
	3.2.6. SVN Documentation

	3.3. Git
	3.3.1. Installation
	3.3.2. Initial Setup
	3.3.3. Git repository
	3.3.4. Untracked files
	3.3.5. Unmodified files
	3.3.6. Modified Status
	3.3.7. Staged files
	3.3.7.1. Viewing changes
	3.3.7.2. Committing changes

	3.3.8. Remote repositories
	3.3.9. Commit logs
	3.3.10. Fixing problems
	3.3.11. Git documentation

	Chapter 4. Libraries and Runtime Support
	4.1. Version Information
	4.2. Compatibility
	4.2.1. API Compatibility
	4.2.2. ABI Compatibility
	4.2.3. Policy
	4.2.3.1. Compatibility Within A Major Release
	4.2.3.2. Compatibility Between Major Releases
	4.2.3.3. Building for forward compatibility across releases

	4.2.4. Static Linking
	4.2.5. Core Libraries
	4.2.6. Non-Core Libraries

	4.3. Library and Runtime Details
	4.3.1. The GNU C Library
	4.3.1.1. GNU C Library Updates
	4.3.1.2. GNU C Library Documentation

	4.3.2. The GNU C++ Standard Library
	4.3.2.1. GNU C++ Standard Library Updates
	4.3.2.2. GNU C++ Standard Library Documentation

	4.3.3. Boost
	4.3.3.1. Boost Updates
	4.3.3.2. Boost Documentation

	4.3.4. Qt
	4.3.4.1. Qt Updates
	4.3.4.2. Qt Creator
	4.3.4.3. Qt Library Documentation

	4.3.5. KDE Development Framework
	4.3.5.1. KDE4 Architecture
	4.3.5.2. kdelibs Documentation

	4.3.6. NSS Shared Databases
	4.3.6.1. Backwards Compatibility
	4.3.6.2. NSS Shared Databases Documentation

	4.3.7. Python
	4.3.7.1. Python Updates
	4.3.7.2. Python Documentation

	4.3.8. Java
	4.3.8.1. Java Documentation

	4.3.9. Ruby
	4.3.9.1. Ruby Documentation

	4.3.10. Perl
	4.3.10.1. Perl Updates
	4.3.10.2. Installation
	4.3.10.3. Perl Documentation

	Chapter 5. Compiling and Building
	5.1. GNU Compiler Collection (GCC)
	5.1.1. GCC Status and Features
	5.1.2. Language Compatibility
	5.1.3. Object Compatibility and Interoperability
	5.1.4. Backwards Compatibility Packages
	5.1.5. Previewing RHEL6 compiler features on RHEL5
	5.1.6. Running GCC
	5.1.6.1. Simple C Usage
	5.1.6.2. Simple C++ Usage
	5.1.6.3. Simple Multi-File Usage
	5.1.6.4. Recommended Optimization Options
	5.1.6.5. Using Profile Feedback to Tune Optimization Heuristics.
	5.1.6.6. Using 32-bit compilers on a 64-bit host

	5.1.7. GCC Documentation

	5.2. Distributed Compiling
	5.3. Autotools
	5.3.1. Autotools Plug-in for Eclipse
	5.3.2. Configuration Script
	5.3.3. Autotools Documentation

	5.4. Eclipse Built-in Specfile Editor

	Chapter 6. Debugging
	6.1. Installing Debuginfo Packages
	6.2. GDB
	6.2.1. Simple GDB
	6.2.2. Running GDB
	6.2.3. Conditional Breakpoints
	6.2.4. Forked Execution
	6.2.5. Debugging Individual Threads
	6.2.6. Alternative User Interfaces for GDB
	6.2.7. GDB Documentation

	6.3. Variable Tracking at Assignments
	6.4. Python Pretty-Printers

	Chapter 7. Profiling
	7.1. Profiling In Eclipse
	7.2. Valgrind
	7.2.1. Valgrind Tools
	7.2.2. Using Valgrind
	7.2.3. Valgrind Plug-in for Eclipse
	7.2.4. Valgrind Documentation

	7.3. OProfile
	7.3.1. OProfile Tools
	7.3.2. Using OProfile
	7.3.3. OProfile Plug-in For Eclipse
	7.3.4. OProfile Documentation

	7.4. SystemTap
	7.4.1. SystemTap Compile Server
	7.4.2. SystemTap Support for Unprivileged Users
	7.4.3. SSL and Certificate Management
	7.4.3.1. Authorizing Compile Servers for Connection
	7.4.3.2. Authorizing Compile Servers for Module Signing (for Unprivileged Users)
	7.4.3.3. Automatic Authorization

	7.4.4. SystemTap Documentation

	7.5. Performance Counters for Linux (PCL) Tools and perf
	7.5.1. Perf Tool Commands
	7.5.2. Using Perf

	7.6. ftrace
	7.6.1. Using ftrace
	7.6.2. ftrace Documentation

	Chapter 8. Documentation Tools
	8.1. Publican
	8.1.1. Commands
	8.1.2. Create a New Document
	8.1.3. Files
	8.1.3.1. Adding Media to Documentation

	8.1.4. Building a Document
	8.1.5. Packaging a Publication
	8.1.6. Brands
	8.1.7. Building a Website
	8.1.8. Documentation

	8.2. Doxygen
	8.2.1. Doxygen Supported Output and Languages
	8.2.2. Getting Started
	8.2.3. Running Doxygen
	8.2.4. Documenting the Sources
	8.2.5. Resources

	Appendix A. Revision History
	Index

