Introduction to SystemTap

Don Domingo

William Cohen
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

This guide provides basic instructions on how to use SystemTap to monitor different subsystems of Red Hat Enterprise Linux in finer detail. The SystemTap Beginners Guide is recommended for users who have taken RHCT\(^1\) or have a similar level of expertise in Red Hat Enterprise Linux.

\(^1\) https://www.redhat.com/courses/rh133_red_hat_linux_system_administration_and_rhct_exam/
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Documentation Goals</td>
<td>1</td>
</tr>
<tr>
<td>1.2. SystemTap Capabilities</td>
<td>1</td>
</tr>
<tr>
<td>2. Using SystemTap</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Installation and Setup</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1. Installing SystemTap</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2. Installing Required Kernel Information RPMs</td>
<td>3</td>
</tr>
<tr>
<td>2.1.3. Initial Testing</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Generating Instrumentation for Other Computers</td>
<td>5</td>
</tr>
<tr>
<td>2.3. Running SystemTap Scripts</td>
<td>7</td>
</tr>
<tr>
<td>2.3.1. SystemTap Flight Recorder Mode</td>
<td>8</td>
</tr>
<tr>
<td>3. Understanding How SystemTap Works</td>
<td>11</td>
</tr>
<tr>
<td>3.1. Architecture</td>
<td>11</td>
</tr>
<tr>
<td>3.2. SystemTap Scripts</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1. Event</td>
<td>13</td>
</tr>
<tr>
<td>3.2.2. Systemtap Handler/Body</td>
<td>15</td>
</tr>
<tr>
<td>3.3. Basic SystemTap Handler Constructs</td>
<td>18</td>
</tr>
<tr>
<td>3.3.1. Variables</td>
<td>18</td>
</tr>
<tr>
<td>3.3.2. Conditional Statements</td>
<td>19</td>
</tr>
<tr>
<td>3.3.3. Command-Line Arguments</td>
<td>21</td>
</tr>
<tr>
<td>3.4. Associative Arrays</td>
<td>21</td>
</tr>
<tr>
<td>3.5. Array Operations in SystemTap</td>
<td>22</td>
</tr>
<tr>
<td>3.5.1. Assigning an Associated Value</td>
<td>22</td>
</tr>
<tr>
<td>3.5.2. Reading Values From Arrays</td>
<td>22</td>
</tr>
<tr>
<td>3.5.3. Incrementing Associated Values</td>
<td>23</td>
</tr>
<tr>
<td>3.5.4. Processing Multiple Elements in an Array</td>
<td>23</td>
</tr>
<tr>
<td>3.5.5. Clearing/Deleting Arrays and Array Elements</td>
<td>24</td>
</tr>
<tr>
<td>3.5.6. Using Arrays in Conditional Statements</td>
<td>26</td>
</tr>
<tr>
<td>3.5.7. Computing for Statistical Aggregates</td>
<td>27</td>
</tr>
<tr>
<td>3.6. Tapsets</td>
<td>28</td>
</tr>
<tr>
<td>4. Useful SystemTap Scripts</td>
<td>29</td>
</tr>
<tr>
<td>4.1. Network</td>
<td>29</td>
</tr>
<tr>
<td>4.1.1. Network Profiling</td>
<td>29</td>
</tr>
<tr>
<td>4.1.2. Tracing Functions Called in Network Socket Code</td>
<td>31</td>
</tr>
<tr>
<td>4.1.3. Monitoring Incoming TCP Connections</td>
<td>32</td>
</tr>
<tr>
<td>4.1.4. Monitoring Network Packets Drops in Kernel</td>
<td>32</td>
</tr>
<tr>
<td>4.2. Disk</td>
<td>34</td>
</tr>
<tr>
<td>4.2.1. Summarizing Disk Read/Write Traffic</td>
<td>34</td>
</tr>
<tr>
<td>4.2.2. Tracking I/O Time For Each File Read or Write</td>
<td>36</td>
</tr>
<tr>
<td>4.2.3. Track Cumulative IO</td>
<td>38</td>
</tr>
<tr>
<td>4.2.4. I/O Monitoring (By Device)</td>
<td>39</td>
</tr>
<tr>
<td>4.2.5. Monitoring Reads and Writes to a File</td>
<td>40</td>
</tr>
<tr>
<td>4.2.6. Monitoring Changes to File Attributes</td>
<td>41</td>
</tr>
<tr>
<td>4.3. Profiling</td>
<td>42</td>
</tr>
</tbody>
</table>
4.3.1. Counting Function Calls Made ... 42
4.3.2. Call Graph Tracing .. 43
4.3.3. Determining Time Spent in Kernel and User Space 44
4.3.4. Monitoring Polling Applications .. 45
4.3.5. Tracking Most Frequently Used System Calls 48
4.3.6. Tracking System Call Volume Per Process ... 49
4.4. Identifying Contended User-Space Locks .. 51

5. Understanding SystemTap Errors ... 53
 5.1. Parse and Semantic Errors ... 53
 5.2. Run Time Errors and Warnings ... 55

6. References .. 57

A. Revision History ... 59

Index ... 61
1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts\(^1\) set. The Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight keycaps and key combinations. For example:

To see the contents of the file `my_next_bestselling_novel` in your current working directory, enter the `cat my_next_bestselling_novel` command at the shell prompt and press `Enter` to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key combination. For example:

Press `Enter` to execute the command.

Press `Ctrl+Alt+F2` to switch to the first virtual terminal. Press `Ctrl+Alt+F1` to return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in **mono-spaced bold**. For example:

File-related classes include `filesystem` for file systems, `file` for files, and `dir` for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text; labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose `System → Preferences → Mouse` from the main menu bar to launch `Mouse Preferences`. In the `Buttons` tab, click the `Left-handed mouse` check box and click...

\(^1\) https://fedorahosted.org/liberation-fonts/
Close to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories → Character Map from the main menu bar. Next, choose Search → Find... from the Character Map menu bar, type the name of the character in the Search field and click Next. The character you sought will be highlighted in the Character Table. Double-click this highlighted character to place it in the Text to copy field and then click the Copy button. Now switch back to your document and choose Edit → Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all distinguishable by context.

Mono-spaced Bold Italic or **Proportional Bold Italic**

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:

To connect to a remote machine using ssh, type `ssh username@domain.name` at a shell prompt. If the remote machine is `example.com` and your username on that machine is john, type `ssh john@example.com`.

The `mount -o remount file-system` command remounts the named file system. For example, to remount the `/home` file system, the command is `mount -o remount /home`.

To see the version of a currently installed package, use the `rpm -q package` command. It will return a result as follows: `package-version-release`.

Note the words in bold italics above — username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:

Publican is a *DocBook* publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in **mono-spaced roman** and presented thus:

```plaintext
books        Desktop   documentation  drafts  mss    photos   stuff  svn
books_tests  Desktop1  downloads      images  notes  scripts  svgs
```

Source-code listings are also set in **mono-spaced roman** but add syntax highlighting as follows:

```java
package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;
```
1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring a box labeled ‘important’ will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat Customer Portal at http://access.redhat.com. Through the customer portal, you can:

- search or browse through a knowledgebase of technical support articles about Red Hat products.
- submit a support case to Red Hat Global Support Services (GSS).
- access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and technology. You can find a list of publicly available mailing lists at https://www.redhat.com/mailman/listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.
2.2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/ against the product Red_Hat_Enterprise_Linux.

When submitting a bug report, be sure to mention the manual's identifier: doc-SystemTap_Beginners_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
Chapter 1.

Introduction

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the operating system (particularly, the kernel) in fine detail. It provides information similar to the output of tools like `netstat`, `ps`, `top`, and `iostat`; however, SystemTap is designed to provide more filtering and analysis options for collected information.

For system administrators, SystemTap can be used as a performance monitoring tool for Red Hat Enterprise Linux 5 or later. It is most useful when other similar tools cannot precisely pinpoint a bottleneck in the system, requiring a deep analysis of system activity. In the same manner, application developers can also use SystemTap to monitor, in finer detail, how their application behaves within the Linux system.

1.1. Documentation Goals

SystemTap provides the infrastructure to monitor the running Linux system for detailed analysis. This can assist administrators and developers in identifying the underlying cause of a bug or performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument, recompile, install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to gather the same information by simply running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the kernel. This makes SystemTap less useful to administrators or developers with limited knowledge of and experience with the Linux kernel. Moreover, much of the existing SystemTap documentation is similarly aimed at knowledgeable and experienced users. This makes learning the tool similarly difficult.

To lower these barriers the SystemTap Beginners Guide was written with the following goals:

- To introduce users to SystemTap, familiarize them with its architecture, and provide setup instructions for all kernel types.
- To provide pre-written SystemTap scripts for monitoring detailed activity in different components of the system, along with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilities

SystemTap was originally developed to provide functionality for Red Hat Enterprise Linux 6 similar to previous Linux probing tools such as `dprobes` and the Linux Trace Toolkit. SystemTap aims to supplement the existing suite of Linux monitoring tools by providing users with the infrastructure to track kernel activity. In addition, SystemTap combines this capability with two attributes:

- Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and monitoring a wide variety of kernel functions, system calls, and other events that occur in kernel-space. With this, SystemTap is not so much a tool as it is a system that allows you to develop your own kernel-specific forensic and monitoring tools.
- Ease-Of-Use: as mentioned earlier, SystemTap allows users to probe kernel-space events without having to resort to the lengthy instrument, recompile, install, and reboot the kernel process.

Most of the SystemTap scripts enumerated in Chapter 4, Useful SystemTap Scripts demonstrate system forensics and monitoring capabilities not natively available with other similar tools (such as `top`, `oprofile`, or `ps`). These scripts are provided to give readers extensive examples of the
application of SystemTap, which in turn will educate them further on the capabilities they can employ when writing their own SystemTap scripts.
Using SystemTap

This chapter instructs users how to install SystemTap, and provides an introduction on how to run SystemTap scripts.

2.1. Installation and Setup

To deploy SystemTap, SystemTap packages along with the corresponding set of `-devel`, `-debuginfo` and `-debuginfo-common-arch` packages for the kernel need to be installed. To use SystemTap on more than one kernel where a system has multiple kernels installed, install the `-devel` and `-debuginfo` packages for each of those kernel versions.

These procedures will be discussed in detail in the following sections.

Important

Many users confuse `-debuginfo` with `-debug`. Remember that the deployment of SystemTap requires the installation of the `-debuginfo` package of the kernel, not the `-debug` version of the kernel.

2.1.1. Installing SystemTap

To deploy SystemTap, install the following RPMs:

- `systemtap`
- `systemtap-runtime`

Assuming that `yum` is installed in the system, these two rpms can be installed with `yum install systemtap systemtap-runtime`. Install the required kernel information RPMs before using SystemTap.

2.1.2. Installing Required Kernel Information RPMs

SystemTap needs information about the kernel in order to place instrumentation in it (i.e. probe it). This information, which allows SystemTap to generate the code for the instrumentation, is contained in the matching `-devel`, `-debuginfo`, and `-debuginfo-common-arch` packages for the kernel. The necessary `-devel` and `-debuginfo` packages for the ordinary "vanilla" kernel are as follows:

- `kernel-debuginfo`
- `kernel-debuginfo-common-arch`
- `kernel-devel`

Likewise, the necessary packages for the PAE kernel would be `kernel-PAE-debuginfo`, `kernel-PAE-debuginfo-common-arch`, and `kernel-PAE-devel`.

To determine what kernel your system is currently using, use:

`uname -r`

For example, if you wish to use SystemTap on kernel version `2.6.32-53.el6` on an i686 machine, then you would need to download and install the following RPMs:
Chapter 2. Using SystemTap

- kernel-debuginfo-2.6.32-53.el6.i686.rpm
- kernel-debuginfo-common-i686-2.6.32-53.el6.i686.rpm
- kernel-devel-2.6.32-53.el6.i686.rpm

Important

The version, variant, and architecture of the -devel, -debuginfo and -debuginfo-common-arch packages must match the kernel to be probed with SystemTap exactly.

The easiest way to install the required kernel information packages is through `yum install` and `debuginfo-install`. Included with later versions of the `yum-utils` package is the `debuginfo-install` (for example, version 1.1.10). Also, `debuginfo-install` requires an appropriate yum repository from which to download and install -debuginfo/-debuginfo-common-arch packages.

Most required kernel packages can be found at ftp://ftp.redhat.com/pub/redhat/linux/enterprise/; navigate there until the appropriate Debuginfo directory for the system is found. Configure `yum` accordingly by adding a new "debug" `yum` repository file under `/etc/yum.repos.d` containing the following lines:

```
[rhel-debuginfo]
name=Red Hat Enterprise Linux $releasever - $basearch - Debug
enabled=1
```

After configuring `yum` with the appropriate repository, install the required -devel, -debuginfo, and -debuginfo-common-arch packages for the kernel by running the following commands:

- `yum install kernelname-devel-version`
- `debuginfo-install kernelname-version`

Replace `kernelname` with the appropriate kernel variant name (for example, `kernel-PAE`), and `version` with the target kernel’s version. For example, to install the required kernel information packages for the `kernel-PAE-2.6.32-53.el6` kernel, run:

- `yum install kernel-PAE-devel-2.6.32-53.el6`
- `debuginfo-install kernel-PAE-2.6.32-53.el6`

If `yum` and `yum-utils` are not installed (and unable to be installed), manually download and install the required kernel information packages. To generate the URL from which to download the required packages, use the following script:

```
rheldebugurl.sh
```

```
#!/bin/bash
pkg="redhat-release-server"
releasever=`rpm --qf "%%{version}" $pkg`
base=`uname -m`
```
Once the required packages to the machine have been manually downloaded, install the RPMs by running `rpm --force -ivh package_names`.

2.1.3. Initial Testing

If the kernel to be probed with SystemTap is currently being used, it is possible to immediately test whether the deployment was successful. If a different kernel is to be probed, reboot and load the appropriate kernel.

To start the test, run the command `stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'`. This command simply instructs SystemTap to print `read performed` then exit properly once a virtual file system read is detected. If the SystemTap deployment was successful, you should get output similar to the following:

```
Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s) in 290usr/260sys/568real ms.
Pass 3: translated to C into "/tmp/stapiArgLX/stap_e5886fa50499994e6a87aadcc43cd392_399.c" in 490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aadcc43cd392_399.ko" in 3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.
```

The last three lines of the output (i.e. beginning with **Pass 5**) indicate that SystemTap was able to successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event being probed (in this case, a virtual file system read), and execute a valid handler (print text then close it with no errors).

2.2. Generating Instrumentation for Other Computers

When users run a SystemTap script, a kernel module is built out of that script. SystemTap then loads the module into the kernel, allowing it to extract the specified data directly from the kernel (refer to **Procedure 3.1, “SystemTap Session”** in **Section 3.1, “Architecture”** for more information).

Normally, SystemTap scripts can only be run on systems where SystemTap is deployed (as in **Section 2.1, “Installation and Setup”**). This could mean that to run SystemTap on ten systems, SystemTap needs to be deployed on **all** those systems. In some cases, this may be neither feasible nor desired. For instance, corporate policy may prohibit an administrator from installing RPMs that provide compilers or debug information on specific machines, which will prevent the deployment of SystemTap.

To work around this, use **cross-instrumentation**. Cross-instrumentation is the process of generating SystemTap instrumentation modules from a SystemTap script on one computer to be used on another computer. This process offers the following benefits:

- The kernel information packages for various machines can be installed on a single **host machine**.
- Each **target machine** only needs one RPM to be installed to use the generated SystemTap instrumentation module: `systemtap-runtime`.

```
```
Chapter 2. Using SystemTap

Note

For the sake of simplicity, the following terms will be used throughout this section:

- **instrumentation module** — the kernel module built from a SystemTap script; i.e. the SystemTap module is built on the host system, and will be loaded on the target kernel of target system.

- **host system** — the system on which the instrumentation modules (from SystemTap scripts) are compiled, to be loaded on target systems.

- **target system** — the system in which the instrumentation module is being built (from SystemTap scripts).

- **target kernel** — the kernel of the target system. This is the kernel which loads/runs the instrumentation module.

Procedure 2.1. Configuring a Host System and Target Systems

1. Install the **systemtap-runtime** RPM on each target system.

2. Determine the kernel running on each target system by running `uname -r` on each target system.

3. Install SystemTap on the host system. The instrumentation module will be built for the target systems on the host system. For instructions on how to install SystemTap, refer to Section 2.1.1, “Installing SystemTap”.

4. Using the target kernel version determined earlier, install the target kernel and related RPMs on the host system by the method described in Section 2.1.2, “Installing Required Kernel Information RPMs”. If multiple target systems use different target kernels, repeat this step for each different kernel used on the target systems.

After performing Procedure 2.1, “Configuring a Host System and Target Systems”, the instrumentation module (for any target system) can now be built on the host system.

To build the instrumentation module, run the following command on the host system (be sure to specify the appropriate values):

```
stap -r kernel_version script -m module_name -p4
```

Here, **kernel_version** refers to the version of the target kernel (the output of `uname -r` on the target machine), **script** refers to the script to be converted into an instrumentation module, and **module_name** is the desired name of the instrumentation module.

Note

To determine the architecture notation of a running kernel, run `uname -m`.

Once the instrumentation module is compiled, copy it to the target system and then load it using:

```
staprun module_name.ko
```
For example, to create the *instrumentation module* `simple.ko` from a SystemTap script named `simple.stp` for the target kernel 2.6.32-53.el6, use the following command:

```
stap -r 2.6.32-53.el6 -e 'probe vfs.read {exit()}' -m simple -p4
```

This will create a module named `simple.ko`. To use the *instrumentation module* `simple.ko`, copy it to the *target system* and run the following command (on the *target system*):

```
staprun simple.ko
```

Important

The *host system* must be the same architecture and running the same distribution of Linux as the *target system* in order for the built *instrumentation module* to work.

2.3. Running SystemTap Scripts

SystemTap scripts are run through the command `stap`. `stap` can run SystemTap scripts from standard input or from file.

Running `stap` and `staprun` requires elevated privileges to the system. However, not all users can be granted root access just to run SystemTap. In some cases, for instance, a non-privileged user may need to run SystemTap instrumentation on their machine.

To allow ordinary users to run SystemTap without root access, add them to one of these user groups:

stapdev

Members of this group can use `stap` to run SystemTap scripts, or `staprun` to run SystemTap instrumentation modules.

Running `stap` involves compiling SystemTap scripts into kernel modules and loading them into the kernel. This requires elevated privileges to the system, which are granted to `stapdev` members. Unfortunately, such privileges also grant effective root access to `stapdev` members. As such, only grant `stapdev` group membership to users who can be trusted with root access.

stapusr

Members of this group can only use `staprun` to run SystemTap instrumentation modules. In addition, they can only run those modules from `/lib/modules/kernel_version/systemtap/`. Note that this directory must be owned only by the root user, and must only be writable by the root user.

Below is a list of commonly used `stap` options:

- **-v**
 Makes the output of the SystemTap session more verbose. This option (for example, `stap -vvv script.stp`) can be repeated to provide more details on the script's execution. It is particularly useful if errors are encountered when running the script. This option is particularly useful if you encounter any errors in running the script.

 For more information about common SystemTap script errors, refer to *Chapter 5, Understanding SystemTap Errors*.

- **-o filename**
 Sends the standard output to file (`filename`).
Chapter 2. Using SystemTap

-\texttt{S size,count}
 Limit files to size megabytes and limit the number of files kept around to count. The file names will have a sequence number suffix. This option implements logrotate operations for SystemTap.

 When used with -o, the -S will limit the size of log files.

-\texttt{x process ID}
 Sets the SystemTap handler function \texttt{target()} to the specified process ID. For more information about \texttt{target()}, refer to \textit{SystemTap Functions}.

-\texttt{c command}
 Sets the SystemTap handler function \texttt{target()} to the specified command. The full path to the specified command must be used; for example, instead of specifying \texttt{cp}, use \texttt{/bin/cp} (as in \texttt{stap script -c /bin/cp}). For more information about \texttt{target()}, refer to \textit{SystemTap Functions}.

-\texttt{e\textquotesingle{}script'
 Use \texttt{script} string rather than a file as input for systemtap translator.

-\texttt{F}
 Use SystemTap's Flight recorder mode and make the script a background process. For more information about flight recorder mode, refer to \textit{Section 2.3.1, “SystemTap Flight Recorder Mode”}.

\texttt{stap} can also be instructed to run scripts from standard input using the switch -\texttt{.} To illustrate:

\begin{quote}
\texttt{Example 2.1. Running Scripts From Standard Input}

\begin{verbatim}
 echo "probe timer.s(1) \{exit()\}" | stap -
\end{verbatim}
\end{quote}

\textit{Example 2.1, “Running Scripts From Standard Input”} instructs \texttt{stap} to run the script passed by \texttt{echo} to standard input. Any \texttt{stap} options to be used should be inserted before the - switch; for instance, to make the example in \textit{Example 2.1, “Running Scripts From Standard Input”} more verbose, the command would be:

\begin{verbatim}
 echo "probe timer.s(1) \{exit()\}" | stap -v -
\end{verbatim}

For more information about \texttt{stap}, refer to \texttt{man stap}.

To run SystemTap instrumentation (i.e. the kernel module built from SystemTap scripts during a cross-instrumentation), use \texttt{staprun} instead. For more information about \texttt{staprun} and cross-instrumentation, refer to \textit{Section 2.2, “Generating Instrumentation for Other Computers”}.

\textbf{Note}

The \texttt{stap} options -\texttt{v} and -\texttt{o} also work for \texttt{staprun}. For more information about \texttt{staprun}, refer to \texttt{man staprun}.

\textbf{2.3.1. SystemTap Flight Recorder Mode}

SystemTap's flight recorder mode allows a SystemTap script to be ran for long periods and just focus on recent output. The flight recorder mode (the -\texttt{F} option) limits the amount of output generated.
There are two variations of the flight recorder mode: in-memory and file mode. In both cases the SystemTap script runs as a background process.

2.3.1.1. In-memory Flight Recorder

When flight recorder mode (the `-F` option) is used without a file name, SystemTap uses a buffer in kernel memory to store the output of the script. Next, SystemTap instrumentation module loads and the probes start running, then instrumentation will detach and be put in the background. When the interesting event occurs, the instrumentation can be reattached and the recent output in the memory buffer and any continuing output can be seen. The following command starts a script using the flight recorder in-memory mode:

```
stap -F /usr/share/doc/systemtap-version/examples/io/iotime.stp
```

Once the script starts, a message that provides the command to reconnect to the running script will appear:

```
Disconnecting from systemtap module.
To reconnect, type "staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556"
```

When the interesting event occurs, reattach to the currently running script and output the recent data in the memory buffer, then get the continuing output with the following command:

```
staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556
```

By default, the kernel buffer is 1MB in size, but it can be increased with the `-s` option specifying the size in megabytes (rounded up to the next power over 2) for the buffer. For example `-s2` on the SystemTap command line would specify 2MB for the buffer.

2.3.1.2. File Flight Recorder

The flight recorder mode can also store data to files. The number and size of the files kept is controlled by the `-S` option followed by two numerical arguments separated by a comma. The first argument is the maximum size in megabytes for the each output file. The second argument is the number of recent files to keep. The file name is specified by the `-o` option followed by the name. SystemTap adds a number suffix to the file name to indicate the order of the files. The following will start SystemTap in file flight recorder mode with the output going to files named `/tmp/pfaults.log.[0-9]+` with each file 1MB or smaller and keeping latest two files:

```
stap -F -o /tmp/pfaults.log -S 1,2 pfaults.stp
```

The number printed by the command is the process ID. Sending a SIGTERM to the process will shutdown the SystemTap script and stop the data collection. For example if the previous command listed the 7590 as the process ID, the following command should shutdown the systemtap script:

```
kill -s SIGTERM 7590
```

Only the most recent two file generated by the script are kept and the older files are been removed. Thus, `ls -sh /tmp/pfaults.log.*` shows the only two files:
Chapter 2. Using SystemTap

<table>
<thead>
<tr>
<th>1020K</th>
<th>/tmp/pfaults.log.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>44K</td>
<td>/tmp/pfaults.log.6</td>
</tr>
</tbody>
</table>

One can look at the highest number file for the latest data, in this case /tmp/pfaults.log.6.
Chapter 3.

Understanding How SystemTap Works

SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running Linux system. These scripts can be designed to extract data, filter it, and summarize it quickly (and safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel then runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc. A handler is a series of script language statements that specify the work to be done whenever the event occurs. This work normally includes extracting data from the event context, storing them into internal variables, and printing results.

3.1. Architecture

A SystemTap session begins when you run a SystemTap script. This session occurs in the following fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in /usr/share/systemtap/tapset/ for any tapsets used. SystemTap will then substitute any located tapsets with their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel module from it. The tools that perform this step are contained in the systemtap package (refer to Section 2.1.1, “Installing SystemTap” for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The staprun in the systemtap-runtime package (refer to Section 2.1.1, “Installing SystemTap” for more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's main front-end tool. For more information about stap, refer to man stap (once SystemTap is properly installed on your machine).

3.2. SystemTap Scripts

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap scripts instruct SystemTap on what type of information to collect, and what to do once that information is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the operating system for the specified events and executes the handlers as they occur.
Chapter 3. Understanding How SystemTap Works

Note

An event and its corresponding handler is collectively called a **probe**. A SystemTap script can have multiple probes.

A probe's handler is commonly referred to as a **probe body**.

In terms of application development, using events and handlers is similar to instrumenting the code by inserting diagnostic print statements in a program's sequence of commands. These diagnostic print statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and allows more flexibility with regard to handlers. Events serve as the triggers for handlers to run; handlers can be specified to record specified data and print it in a certain manner.

Format

SystemTap scripts use the file extension `.stp`, and contains probes written in the following format:

```plaintext
probe event {statements}
```

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If multiple events are specified in a single probe, SystemTap will execute the handler when any of the specified events occur.

Each probe has a corresponding **statement block**. This statement block is enclosed in braces ({ }) and contains the statements to be executed per event. SystemTap executes these statements in sequence; special separators or terminators are generally not necessary between multiple statements.

Note

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C programming language. A statement block can be nested within another statement block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus, rather than repeatedly writing the same series of statements in multiple probes, you can just place the instructions in a **function**, as in:

```plaintext
function function_name(arguments) {statements}
probe event {function_name(arguments)}
```

The **statements** in `function_name` are executed when the probe for `event` executes. The **arguments** are optional values passed into the function.
Important

Section 3.2, "SystemTap Scripts" is designed to introduce readers to the basics of SystemTap scripts. To understand SystemTap scripts better, it is advisable that you refer to Chapter 4, Useful SystemTap Scripts; each section therein provides a detailed explanation of the script, its events, handlers, and expected output.

3.2.1. Event

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any process executes an instruction at a particular location in kernel code. This gives other events a reference point from which more contextual data may be available.

Examples of synchronous events include:

syscall.system_call
The entry to the system call system_call. If the exit from a syscall is desired, appending a .return to the event monitor the exit of the system call instead. For example, to specify the entry and exit of the system call close, use syscall.close and syscall.close.return respectively.

vfs.file_operation
The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event, appending a .return to the event monitors the exit of the file_operation operation.

kernel.function("function")
The entry to the kernel function function. For example, kernel.function("sys_open") refers to the "event" that occurs when the kernel function sys_open is called by any thread in the system. To specify the return of the kernel function sys_open, append the return string to the event statement; i.e. kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry or exit of a function in a kernel source file. Consider the following example:

Example 3.1. wildcards.stp

```plaintext
probe kernel.function("@net/socket.c") { }
probe kernel.function("@net/socket.c").return { }
```

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel source file net/socket.c. The second probe specifies the exit of all those functions. Note that in this example, there are no statements in the handler; as such, no information will be collected or displayed.

kernel.trace("tracepoint")
The static probe for tracepoint. Recent kernels (2.6.30 and newer) include instrumentation for specific events in the kernel. These events are statically marked with tracepoints. One example of
a tracepoint available in systemtap is `kernel.trace("kfree_skb")` which indicates each time a network buffer is freed in the kernel.

```plaintext
module("module").function("function")
```

Allows you to probe functions within modules. For example:

```plaintext
Example 3.2. moduleprobe.stp
```

```plaintext
probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }
```

The first probe in `Example 3.2, "moduleprobe.stp"` points to the entry of all functions for the `ext3` module. The second probe points to the exits of all functions for that same module; the use of the `.return` suffix is similar to `kernel.function()`. Note that the probes in `Example 3.2, "moduleprobe.stp"` do not contain statements in the probe handlers, and as such will not print any useful data (as in `Example 3.1, "wildcards.stp"`).

A system's kernel modules are typically located in `/lib/modules/kernel_version`, where `kernel_version` refers to the currently loaded kernel version. Modules use the file name extension `.ko`.

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe points consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

```plaintext
begin
    The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.
end
    The end of a SystemTap session.
```

```plaintext
timer events
    An event that specifies a handler to be executed periodically. For example:
```

```plaintext
Example 3.3. timer-s.stp
```

```plaintext
probe timer.s(4) {
    printf("hello world\n")
}
```

`Example 3.3, "timer-s.stp"` is an example of a probe that prints `hello world` every 4 seconds. Note that you can also use the following timer events:

- `timer.ms(milliseconds)`
- `timer.us(microseconds)`
- `timer.ns(nanoseconds)`
• timer.hz\texttt{(hertz)}

• timer.jiffies\texttt{(jiffies)}

When used in conjunction with other probes that collect information, timer events allows you to print out get periodic updates and see how that information changes over time.

Important

SystemTap supports the use of a large collection of probe events. For more information about supported events, refer to \texttt{man stapprobes}. The \texttt{SEE ALSO} section of \texttt{man stapprobes} also contains links to other \texttt{man} pages that discuss supported events for specific subsystems and components.

3.2.2. Systemtap Handler/Body

Consider the following sample script:

Example 3.4. helloworld.stp

```plaintext
probe begin
{
    printf ("hello world\n")
    exit()
}
```

In **Example 3.4, “helloworld.stp”**, the event \texttt{begin} (i.e. the start of the session) triggers the handler enclosed in \{ \}, which simply prints \texttt{hello world} followed by a new-line, then exits.

Note

SystemTap scripts continue to run until the \texttt{exit()} function executes. If the users wants to stop the execution of the script, it can interrupted manually with \texttt{Ctrl+C}.

printf () Statements

The \texttt{printf ()} statement is one of the simplest functions for printing data. \texttt{printf()} can also be used to display data using a wide variety of SystemTap functions in the following format:

```plaintext
printf ("format string\n", arguments)
```

The \texttt{format string} specifies how \texttt{arguments} should be printed. The format string of **Example 3.4, “helloworld.stp”** simply instructs SystemTap to print \texttt{hello world}, and contains no format specifiers.

You can use the format specifiers \texttt{%s} (for strings) and \texttt{%d} (for numbers) in format strings, depending on your list of arguments. Format strings can have multiple format specifiers, each matching a corresponding argument; multiple arguments are delimited by a comma (,).
Note

Semantically, the SystemTap `printf` function is very similar to its C language counterpart. The aforementioned syntax and format for SystemTap's `printf` function is identical to that of the C-style `printf`.

To illustrate this, consider the following probe example:

```
Example 3.5. variables-in-printf-statements.stp

probe syscall.open
{
  printf("%s(%d) open\n", execname(), pid())
}
```

`Example 3.5, “variables-in-printf-statements.stp”` instructs SystemTap to probe all entries to the system call `open`; for each event, it prints the current `execname()` (a string with the executable name) and `pid()` (the current process ID number), followed by the word `open`. A snippet of this probe's output would look like:

```
vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open
```

SystemTap Functions

SystemTap supports a wide variety of functions that can be used as `printf()` arguments. `Example 3.5, “variables-in-printf-statements.stp”` uses the SystemTap functions `execname()` (name of the process that called a kernel function/performed a system call) and `pid()` (current process ID).

The following is a list of commonly-used SystemTap functions:

- `tid()`
 The ID of the current thread.

- `uid()`
 The ID of the current user.

- `cpu()`
 The current CPU number.

- `gettimeofday_s()`
 The number of seconds since UNIX epoch (January 1, 1970).

- `ctime()`
 Convert number of seconds since UNIX epoch to date.
pp()
 A string describing the probe point currently being handled.

thread_indent()
 This particular function is quite useful, providing you with a way to better organize your print
 results. The function takes one argument, an indentation delta, which indicates how many spaces
 to add or remove from a thread’s “indentation counter”. It then returns a string with some generic
 trace data along with an appropriate number of indentation spaces.

 The generic data included in the returned string includes a timestamp (number of microseconds
 since the first call to thread_indent() by the thread), a process name, and the thread ID.
 This allows you to identify what functions were called, who called them, and the duration of each
 function call.

 If call entries and exits immediately precede each other, it is easy to match them. However,
 in most cases, after a first function call entry is made several other call entries and exits may
 be made before the first call exits. The indentation counter helps you match an entry with its
 corresponding exit by indenting the next function call if it is not the exit of the previous one.

 Consider the following example on the use of thread_indent():

 Example 3.6. thread_indent.stp

   ```
   probe kernel.function("*@net/socket.c")
   {
     printf("%@s -> %s\n", thread_indent(1), probefunc())
   }
   probe kernel.function("*@net/socket.c").return
   {
     printf("%@s <- %s\n", thread_indent(-1), probefunc())
   }
   ```

 Example 3.6. “thread_indent.stp” prints out the thread_indent() and probe functions at each
 event in the following format:

 0 ftp(7223): -> sys_socketcall
 1159 ftp(7223): -> sys_socket
 2173 ftp(7223): -> __sock_create
 2286 ftp(7223): -> sock_alloc_inode
 2737 ftp(7223): <- sock_alloc_inode
 3349 ftp(7223): -> sock_alloc
 3389 ftp(7223): <- sock_alloc
 3417 ftp(7223): <- __sock_create
 4117 ftp(7223): -> sock_create
 4160 ftp(7223): <- sock_create
 4301 ftp(7223): -> sock_map_fd
 4644 ftp(7223): -> sock_map_file
 4699 ftp(7223): <- sock_map_file
 4715 ftp(7223): <- sock_map_fd
 4732 ftp(7223): <- sys_socket
 4775 ftp(7223): <- sys_socketcall

 This sample output contains the following information:

 • The time (in microseconds) since the initial thread_indent() call for the thread (included in
 the string from thread_indent()).
Chapter 3. Understanding How SystemTap Works

- The process name (and its corresponding ID) that made the function call (included in the string from `thread_indent()`).
- An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you match specific function call entries with their corresponding exits.
- The name of the function called by the process.

name
Identifies the name of a specific system call. This variable can only be used in probes that use the event `syscall.system_call`.

target()
Used in conjunction with `stap script -x process ID` or `stap script -c command`. If you want to specify a script to take an argument of a process ID or command, use `target()` as the variable in the script to refer to it. For example:

```
Example 3.7. targetexample.stp

probe syscall.* {
    if (pid() == target())
        printf("%s/n", name)
}
```

When Example 3.7, “targetexample.stp” is run with the argument `-x process ID`, it watches all system calls (as specified by the event `syscall.*`) and prints out the name of all system calls made by the specified process.

This has the same effect as specifying `if (pid() == process ID)` each time you wish to target a specific process. However, using `target()` makes it easier for you to re-use the script, giving you the ability to simply pass a process ID as an argument each time you wish to run the script (e.g. `stap targetexample.stp -x process ID`).

For more information about supported SystemTap functions, refer to `man stapfuncs`.

3.3. Basic SystemTap Handler Constructs

SystemTap supports the use of several basic constructs in handlers. The syntax for most of these handler constructs are mostly based on C and `awk` syntax. This section describes several of the most useful SystemTap handler constructs, which should provide you with enough information to write simple yet useful SystemTap scripts.

3.3.1. Variables

Variables can be used freely throughout a handler; simply choose a name, assign a value from a function or expression to it, and use it in an expression. SystemTap automatically identifies whether a variable should be typed as a string or integer, based on the type of the values assigned to it. For instance, if you use set the variable `foo` to `gettimeofday_s()` (as in `foo = gettimeofday_s()`), then `foo` is typed as a number and can be printed in a `printf()` with the integer format specifier (`%d`).

Note, however, that by default variables are only local to the probe they are used in. This means that variables are initialized, used and disposed at each probe handler invocation. To share a variable
between probes, declare the variable name using `global` outside of the probes. Consider the following example:

Example 3.8. timer-jiffies.stp

```plaintext
global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
    hz=(1000*count_jiffies) / count_ms
    printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n", count_jiffies, count_ms, hz)
    exit ()
}
```

Example 3.8, “timer-jiffies.stp” computes the `CONFIG_HZ` setting of the kernel using timers that count jiffies and milliseconds, then computing accordingly. The `global` statement allows the script to use the variables `count_jiffies` and `count_ms` (set in their own respective probes) to be shared with `probe timer.ms(12345)`.

Note

The `++` notation in **Example 3.8, “timer-jiffies.stp”** (i.e. `count_jiffies` ++ and `count_ms` + +) is used to increment the value of a variable by 1. In the following probe, `count_jiffies` is incremented by 1 every 100 jiffies:

```plaintext
probe timer.jiffies(100) { count_jiffies ++ }
```

In this instance, SystemTap understands that `count_jiffies` is an integer. Because no initial value was assigned to `count_jiffies`, its initial value is zero by default.

3.3.2. Conditional Statements

In some cases, the output of a SystemTap script may be too big. To address this, you need to further refine the script's logic in order to delimit the output into something more relevant or useful to your probe.

You can do this by using `conditionals` in handlers. SystemTap accepts the following types of conditional statements:

If/Else Statements

Format:

```plaintext
if (condition)
    statement1
else
    statement2
```

The `statement1` is executed if the `condition` expression is non-zero. The `statement2` is executed if the `condition` expression is zero. The `else` clause (else `statement2`) is optional. Both `statement1` and `statement2` can be statement blocks.
Example 3.9. *ifelse.stp*

```cpp
global countread, countnonread
probe kernel.function("vfs_read"), kernel.function("vfs_write")
{
    if (probefunc() == "vfs_read")
        countread ++
    else
        countnonread ++
}
probe timer.s(5) { exit() }
probe end
{
    printf("VFS reads total %d
VFS writes total %d\n", countread, countnonread)
}
```

Example 3.9, “ifelse.stp” is a script that counts how many virtual file system reads (*vfs_read*) and writes (*vfs_write*) the system performs within a 5-second span. When run, the script increments the value of the variable *countread* by 1 if the name of the function it probed matches *vfs_read* (as noted by the condition `if (probefunc() == "vfs_read")`); otherwise, it increments *countnonread* (`else {countnonread ++}`).

While Loops

Format:

```cpp
while (condition) 
    statement
```

So long as *condition* is non-zero the block of statements in *statement* are executed. The *statement* is often a statement block and it must change a value so *condition* will eventually be zero.

For Loops

Format:

```cpp
for (initialization; conditional; increment) statement
```

The *for* loop is simply shorthand for a while loop. The following is the equivalent *while* loop:

```cpp
initialization
while (conditional) {
    statement
    increment
}
```

Conditional Operators

Aside from `==` ("is equal to"), you can also use the following operators in your conditional statements:

```cpp
>=
```

Greater than or equal to
Command-Line Arguments

\[<=\]
\[!=\]

3.3.3. Command-Line Arguments
You can also allow a SystemTap script to accept simple command-line arguments using a $ or @ immediately followed by the number of the argument on the command line. Use $ if you are expecting the user to enter an integer as a command-line argument, and @ if you are expecting a string.

Example 3.10. commandlineargs.stp

```plaintext
probe kernel.function(@1) { }
probe kernel.function(@1).return { }
```

Example 3.10, "commandlineargs.stp" is similar to Example 3.1, "wildcards.stp", except that it allows you to pass the kernel function to be probed as a command-line argument (as in stap commandlineargs.stp kernel function). You can also specify the script to accept multiple command-line arguments, noting them as @1, @2, and so on, in the order they are entered by the user.

3.4. Associative Arrays
SystemTap also supports the use of associative arrays. While an ordinary variable represents a single value, associative arrays can represent a collection of values. Simply put, an associative array is a collection of unique keys; each key in the array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they should be declared as global variables in the SystemTap script. The syntax for accessing an element in an associative array is similar to that of awk, and is as follows:

```
array_name[index_expression]
```

Here, the array_name is any arbitrary name the array uses. The index_expression is used to refer to a specific unique key in the array. To illustrate, let us try to build an array named foo that specifies the ages of three people (i.e. the unique keys): tom, dick, and harry. To assign them the ages (i.e. associated values) of 23, 24, and 25 respectively, we'd use the following array statements:

Example 3.11. Basic Array Statements

```plaintext
foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25
```

You can specify up to nine index expressons in an array statement, each one delimited by a comma (,). This is useful if you wish to have a key that contains multiple pieces of information. The following
line from `disktop.stp` uses 5 elements for the key: process ID, executable name, user ID, parent process ID, and string "W". It associates the value of `devname` with that key.

```plaintext
device[pid(),execname(),uid(),ppid(),"W"] = devname
```

Important

All associate arrays must be declared as `global`, regardless of whether the associate array is used in one or multiple probes.

3.5. Array Operations in SystemTap

This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value

Use `=` to set an associated value to indexed unique pairs, as in:

```plaintext
array_name[index_expression] = value
```

Example 3.11, “Basic Array Statements” shows a very basic example of how to set an explicit associated value to a unique key. You can also use a handler function as both your `index_expression` and `value`. For example, you can use arrays to set a timestamp as the associated value to a process name (which you wish to use as your unique key), as in:

```plaintext
foo[tid()] = gettimeofday_s()
```

Whenever an event invokes the statement in *Example 3.12, “Associating Timestamps to Process Names”*, SystemTap returns the appropriate `tid()` value (i.e. the ID of a thread, which is then used as the unique key). At the same time, SystemTap also uses the function `gettimeofday_s()` to set the corresponding timestamp as the associated value to the unique key defined by the function `tid()`. This creates an array composed of key pairs containing thread IDs and timestamps.

In this same example, if `tid()` returns a value that is already defined in the array `foo`, the operator will discard the original associated value to it, and replace it with the current timestamp from `gettimeofday_s()`.

3.5.2. Reading Values From Arrays

You can also read values from an array the same way you would read the value of a variable. To do so, include the `array_name[index_expression]` statement as an element in a mathematical expression. For example:

```plaintext
Example 3.13. Using Array Values in Simple Computations
```
delta = gettimeofday_s() - foo[tid()]

This example assumes that the array `foo` was built using the construct in Example 3.12, “Associating Timestamps to Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a timestamp that will serve as a reference point, to be used in computing for `delta`.

The construct in Example 3.13, “Using Array Values in Simple Computations” computes a value for the variable `delta` by subtracting the associated value of the key `tid()` from the current `gettimeofday_s()`. The construct does this by reading the value of `tid()` from the array. This particular construct is useful for determining the time between two events, such as the start and completion of a read operation.

Note

If the `index_expression` cannot find the unique key, it returns a value of 0 (for numerical operations, such as Example 3.13, “Using Array Values in Simple Computations”) or a null/empty string value (for string operations) by default.

3.5.3. Incrementing Associated Values

Use `++` to increment the associated value of a unique key in an array, as in:

```
array_name[index_expression] ++
```

Again, you can also use a handler function for your `index_expression`. For example, if you wanted to tally how many times a specific process performed a read to the virtual file system (using the event `vfs.read`), you can use the following probe:

Example 3.14. vfsreads.stp

```plaintext
probe vfs.read
{
  reads[execname()] ++
}
```

In Example 3.14, “vfsreads.stp”, the first time that the probe returns the process name `gnome-terminal` (i.e. the first time `gnome-terminal` performs a VFS read), that process name is set as the unique key `gnome-terminal` with an associated value of 1. The next time that the probe returns the process name `gnome-terminal`, SystemTap increments the associated value of `gnome-terminal` by 1. SystemTap performs this operation for all process names as the probe returns them.

3.5.4. Processing Multiple Elements in an Array

Once you've collected enough information in an array, you will need to retrieve and process all elements in that array to make it useful. Consider Example 3.14, “vfsreads.stp”: the script collects information about how many VFS reads each process performs, but does not specify what to do with it. The obvious means for making Example 3.14, “vfsreads.stp” useful is to print the key pairs in the array `reads`, but how?
Chapter 3. Understanding How SystemTap Works

The best way to process all key pairs in an array (as an iteration) is to use the `foreach` statement. Consider the following example:

Example 3.15. cumulative-vfsreads.stp

```
global reads
probe vfs.read
{
    reads[execname()] ++
}
probe timer.s(3)
{
    foreach (count in reads)
        printf("%s : %d \n", count, reads[count])
}
```

In the second probe of Example 3.15, "cumulative-vfsreads.stp", the `foreach` statement uses the variable `count` to reference each iteration of a unique key in the array `reads`. The `reads[count]` array statement in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.15, "cumulative-vfsreads.stp", the script prints VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read along with a corresponding VFS-read count.

Now, remember that the `foreach` statement in Example 3.15, "cumulative-vfsreads.stp" prints all iterations of process names in the array, and in no particular order. You can instruct the script to process the iterations in a particular order by using `+` (ascending) or `-` (descending). In addition, you can also limit the number of iterations the script needs to process with the `limit value` option.

For example, consider the following replacement probe:

```
probe timer.s(3)
{
    foreach (count in reads- limit 10)
        printf("%s : %d \n", count, reads[count])
}
```

This `foreach` statement instructs the script to process the elements in the array `reads` in descending order (of associated value). The `limit 10` option instructs the `foreach` to only process the first ten iterations (i.e. print the first 10, starting with the highest value).

3.5.5. Clearing/Deleting Arrays and Array Elements

Sometimes, you may need to clear the associated values in array elements, or reset an entire array for re-use in another probe. Example 3.15, "cumulative-vfsreads.stp" in Section 3.5.4, "Processing Multiple Elements in an Array" allows you to track how the number of VFS reads per process grows over time, but it does not show you the number of VFS reads each process makes per 3-second period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this using the `delete` operator to delete elements in an array, or an entire array. Consider the following example:
In Example 3.16, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads each process made within the probed 3-second period only. The `delete reads` statement clears the `reads` array within the probe.

Note

You can have multiple array operations within the same probe. Using the examples from Section 3.5.4, “Processing Multiple Elements in an Array” and Section 3.5.5, “Clearing/Deleting Arrays and Array Elements”, you can track the number of VFS reads each process makes per 3-second period and tally the cumulative VFS reads of those same processes. Consider the following example:

```plaintext
Example 3.16. noncumulative-vfsreads.stp

global reads, totalreads
probe vfs.read
{
  reads[execname()] ++
  totalreads[execname()] ++
}
probe timer.s(3)
{
  printf("======\n")
  foreach (count in reads)
    printf("%s : %d \n", count, reads[count])
  delete reads
}
probe end
{
  printf("TOTALS\n")
  foreach (total in totalreads)
    printf("%s : %d \n", total, totalreads[total])
}
```

In this example, the arrays `reads` and `totalreads` track the same information, and are printed out in a similar fashion. The only difference here is that `reads` is cleared every 3-second period, whereas `totalreads` keeps growing.
3.5.6. Using Arrays in Conditional Statements

You can also use associative arrays in `if` statements. This is useful if you want to execute a subroutine once a value in the array matches a certain condition. Consider the following example:

Example 3.17. vfsreads-print-if-1kb.stp

```plaintext
global reads
probe vfs.read
{
    reads[execname()] ++
}

probe timer.s(3)
{
    printf("======\n")
    foreach (count in reads-)
    {
        if (reads[count] >= 1024)
            printf("%s : %dkB \n", count, reads[count]/1024)
        else
            printf("%s : %dB \n", count, reads[count])
    }
}
```

Every three seconds, *Example 3.17, "vfsreads-print-if-1kb.stp"* prints out a list of all processes, along with how many times each process performed a VFS read. If the associated value of a process name is equal or greater than 1024, the `if` statement in the script converts and prints it out in kB.

Testing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an array can be used in `if` statements, as in:

```plaintext
if([index_expression] in array_name) statement
```

To illustrate this, consider the following example:

Example 3.18. vfsreads-stop-on-stapio2.stp

```plaintext
global reads
probe vfs.read
{
    reads[execname()] ++
}

probe timer.s(3)
{
    printf("======\n")
    foreach (count in reads+)
    {
        printf("%s : %d \n", count, reads[count])
    }
    if(["stapio"] in reads) {
        printf("stapio read detected, exiting\n")
        exit()
    }
}
```
The `if("stapio" in reads)` statement instructs the script to print `stapio read detected, exiting` once the unique key `stapio` is added to the array `reads`.

3.5.7. Computing for Statistical Aggregates

Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate new data quickly and in large volume (i.e. storing only aggregated stream statistics). Statistical aggregates can be used in global variables or as elements in an array.

To add value to a statistical aggregate, use the operator `<<< value`.

Example 3.19. stat-aggregates.stp

```
global reads
probe vfs.read
{
    reads[execname()] <<< count
}
```

In Example 3.19, "stat-aggregates.stp", the operator `<<< count` stores the amount returned by `count` to the associated value of the corresponding `execname()` in the `reads` array. Remember, these values are **stored**; they are not added to the associated values of each unique key, nor are they used to replace the current associated values. In a manner of speaking, think of it as having each unique key (execname()) having multiple associated values, accumulating with each probe handler run.

Note

In the context of Example 3.19, "stat-aggregates.stp", `count` returns the amount of data written by the returned `execname()` to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format `@extractor(variable/array index expression)`. `extractor` can be any of the following integer extractors:

- **count**

 Returns the number of all values stored into the variable/array index expression. Given the sample probe in Example 3.19, "stat-aggregates.stp", the expression `@count(writes[execname()])` will return *how many values are stored* in each unique key in array `writes`.

- **sum**

 Returns the sum of all values stored into the variable/array index expression. Again, given sample probe in Example 3.19, "stat-aggregates.stp", the expression `@sum(writes[execname()])` will return *the total of all values stored* in each unique key in array `writes`.

- **min**

 Returns the smallest among all the values stored in the variable/array index expression.

- **max**

 Returns the largest among all the values stored in the variable/array index expression.

- **avg**

 Returns the average of all values stored in the variable/array index expression.
When using statistical aggregates, you can also build array constructs that use multiple index expressions (to a maximum of 5). This is helpful in capturing additional contextual information during a probe. For example:

Example 3.20. Multiple Array Indexes

```plaintext
global reads
probe vfs.read
{
  reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
  foreach([var1,var2] in reads)
    printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}
```

In Example 3.20, "Multiple Array Indexes", the first probe tracks how many times each process performs a VFS read. What makes this different from earlier examples is that this array associates a performed read to both a process name and its corresponding process ID.

The second probe in Example 3.20, "Multiple Array Indexes" demonstrates how to process and print the information collected by the array reads. Note how the foreach statement uses the same number of variables (i.e. var1 and var2) contained in the first instance of the array reads from the first probe.

3.6. Tapsets

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap scripts. When a user runs a SystemTap script, SystemTap checks the script's probe events and handlers against the tapset library; SystemTap then loads the corresponding probes and functions before translating the script to C (refer to Section 3.1, “Architecture” for information on what transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the file name extension .stp. The standard library of tapsets is located in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts, tapsets are not meant for direct execution; rather, they constitute the library from which other scripts can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define events and functions. In a manner of speaking, tapsets provide useful aliases for functions that users may want to specify as an event; knowing the proper alias to use is, for the most part, easier than remembering specific kernel functions that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in tapsets. For example, thread_indent() is defined in indent.stp.
Useful SystemTap Scripts

This chapter enumerates several SystemTap scripts you can use to monitor and investigate different subsystems. All of these scripts are available at `/usr/share/systemtap/testsuite/systemtap.examples/` once you install the `systemtap-testsuite` RPM.

4.1. Network

The following sections showcase scripts that trace network-related functions and build a profile of network activity.

4.1.1. Network Profiling

This section describes how to profile network activity. `nettop.stp` provides a glimpse into how much network traffic each process is generating on a machine.

```
nettop.stp

#!/usr/bin/env stap

global ifxmit, ifrecv
global ifmerged

probe netdev.transmit
{
    ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
    ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
    printf("%5s %5s %-7s %7s %7s %7s %-15s
", "PID", "UID", "DEV", "XMIT_PK", "RECV_PK", "XMIT_KB", "RECV_KB", "COMMAND")

    foreach ([pid, dev, exec, uid] in ifrecv)
    {
        ifmerged[pid, dev, exec, uid] += @count(ifrecv[pid, dev, exec, uid]);
    }

    foreach ([pid, dev, exec, uid] in ifxmit)
    {
        ifmerged[pid, dev, exec, uid] += @count(ifxmit[pid, dev, exec, uid]);
    }

    foreach ([pid, dev, exec, uid] in ifmerged-)
    {
        n_xmit = @count(ifxmit[pid, dev, exec, uid])
        n_recv = @count(ifrecv[pid, dev, exec, uid])
        printf("%5d %5d %-7s %7d %7d %7d %-15s
", pid, uid, dev, n_xmit, n_recv,
        n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
        n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
        exec)
    }

    print("\n")

    delete ifxmit
    delete ifrecv
    delete ifmerged
```
Chapter 4. Useful SystemTap Scripts

```c
probe timer.ms(5000), end, error
{
    print_activity()
}
```

Note that function `print_activity()` uses the following expressions:

```c
n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0
```

These expressions are if/else conditionals. The first statement is simply a more concise way of writing the following pseudo code:

```c
if n_recv != 0 then
    @sum(ifrecv[pid, dev, exec, uid])/1024
else
    0
```

`nettop.stp` tracks which processes are generating network traffic on the system, and provides the following information about each process:

- **PID** — the ID of the listed process.
- **UID** — user ID. A user ID of `0` refers to the root user.
- **DEV** — which ethernet device the process used to send / receive data (e.g. eth0, eth1)
- **XMIT_PK** — number of packets transmitted by the process
- **RECV_PK** — number of packets received by the process
- **XMIT_KB** — amount of data sent by the process, in kilobytes
- **RECV_KB** — amount of data received by the service, in kilobytes

`nettop.stp` provides network profile sampling every 5 seconds. You can change this setting by editing `probe timer.ms(5000)` accordingly. Example 4.1, “nettop.stp Sample Output” contains an excerpt of the output from `nettop.stp` over a 20-second period:

Example 4.1. nettop.stp Sample Output

```plaintext
<table>
<thead>
<tr>
<th>PID</th>
<th>UID</th>
<th>DEV</th>
<th>XMIT_PK</th>
<th>RECV_PK</th>
<th>XMIT_KB</th>
<th>RECV_KB</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>eth0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>swapper</td>
</tr>
<tr>
<td>11178</td>
<td>0</td>
<td>eth0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>synergyc</td>
</tr>
<tr>
<td>2886</td>
<td>4</td>
<td>eth0</td>
<td>79</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>cups-polld</td>
</tr>
<tr>
<td>11362</td>
<td>0</td>
<td>eth0</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>5</td>
<td>firefox</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>eth0</td>
<td>3</td>
<td>32</td>
<td>0</td>
<td>3</td>
<td>swapper</td>
</tr>
<tr>
<td>2886</td>
<td>4</td>
<td>lo</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>cups-polld</td>
</tr>
<tr>
<td>11178</td>
<td>0</td>
<td>eth0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>synergyc</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>eth0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>swapper</td>
</tr>
</tbody>
</table>
```
4.1.2. Tracing Functions Called in Network Socket Code

This section describes how to trace functions called from the kernel's `net/socket.c` file. This task helps you identify, in finer detail, how each process interacts with the network at the kernel level.

socket-trace.stp

```bash
#!/usr/bin/stap

probe kernel.function("@net/socket.c").call {
    printf ("%s -> %s\n", thread_indent(1), probefunc())
}

probe kernel.function("@net/socket.c").return {
    printf ("%s <- %s\n", thread_indent(-1), probefunc())
}
```

socket-trace.stp is identical to Example 3.6, “thread_indent.stp”, which was earlier used in SystemTap Functions to illustrate how `thread_indent()` works.

Example 4.2. socket-trace.stp Sample Output

```
[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883): -> sys_recv
8 scim-bridge(3883): -> sys_recvfrom
12 scim-bridge(3883): -> sock_from_file
16 scim-bridge(3883): <- sock_from_file
20 scim-bridge(3883): -> sock_recvmsg
24 scim-bridge(3883): <- sock_recvmsg
28 scim-bridge(3883): <- sys_recvfrom
31 scim-bridge(3883): <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]
```

Example 4.2, “socket-trace.stp Sample Output” contains a 3-second excerpt of the output for `socket-trace.stp`. For more information about the output of this script as provided by `thread_indent()`, refer to SystemTap Functions Example 3.6, “thread_indent.stp”.
4.1.3. Monitoring Incoming TCP Connections

This section illustrates how to monitor incoming TCP connections. This task is useful in identifying any unauthorized, suspicious, or otherwise unwanted network access requests in real time.

tcp_connections.stp

```bash
#!/usr/bin/env stap

probe begin {
    printf("%6s %16s %6s %6s %16s\n", "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
    kernel.function("inet_csk_accept").return? {
    sock = $return
    if (sock != 0)
        printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
            inet_get_local_port(sock), inet_get_ip_source(sock))
}
```

While `tcp_connections.stp` is running, it will print out the following information about any incoming TCP connections accepted by the system in real time:

- Current **UID**
- **CMD** - the command accepting the connection
- **PID** of the command
- Port used by the connection
- IP address from which the TCP connection originated

Example 4.3. tcp_connections.stp Sample Output

<table>
<thead>
<tr>
<th>UID</th>
<th>CMD</th>
<th>PID</th>
<th>PORT</th>
<th>IP_SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sshd</td>
<td>3165</td>
<td>22</td>
<td>10.64.0.227</td>
</tr>
<tr>
<td>0</td>
<td>sshd</td>
<td>3165</td>
<td>22</td>
<td>10.64.0.227</td>
</tr>
</tbody>
</table>

4.1.4. Monitoring Network Packets Drops in Kernel

The network stack in Linux can discard packets for various reasons. Some Linux kernels include a tracepoint, `kernel.trace("kfree_skb")`, which easily tracks where packets are discarded. `dropwatch.stp` uses `kernel.trace("kfree_skb")` to trace packet discards; the script summarizes which locations discard packets every five-second interval.

dropwatch.stp

```bash
#!/usr/bin/stap

############################################################
# Dropwatch.stp

```

```
```
The `kernel.trace("kfree_skb")` traces which places in the kernel drop network packets. The `kernel.trace("kfree_skb")` has two arguments: a pointer to the buffer being freed (`$skb`) and the location in kernel code the buffer is being freed (`$location`).

Running the dropwatch.stp script 15 seconds would result in output similar in Example 4.4, "dropwatch.stp Sample Output". The output lists the number of misses for tracepoint address and the actual address.

Example 4.4. dropwatch.stp Sample Output

```
Monitoring for dropped packets
51 packets dropped at location 0xffffffff8024cd0f
 2 packets dropped at location 0xffffffff8044b472
51 packets dropped at location 0xffffffff8024cd0f
 1 packets dropped at location 0xffffffff8044b472
97 packets dropped at location 0xffffffff8024cd0f
 1 packets dropped at location 0xffffffff8044b472
Stopping dropped packet monitor
```
4.2. Disk

The following sections showcase scripts that monitor disk and I/O activity.

4.2.1. Summarizing Disk Read/Write Traffic

This section describes how to identify which processes are performing the heaviest disk reads/writes to the system.

disktop.stp

```bash
#!/usr/bin/stap
#
# Copyright (C) 2007 Oracle Corp.
#
# Get the status of reading/writing disk every 5 seconds,
# output top ten entries
#
# This is free software, GNU General Public License (GPL);
# either version 2, or (at your option) any later version.
#
# Usage:
#   ./disktop.stp
#
# global io_stat,device
# global read_bytes,write_bytes

probe vfs.read.return {
  if ($return>0) {
    if (devname!="N/A") { /*skip read from cache*/
      io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
      device[pid(),execname(),uid(),ppid(),"R"] = devname
      read_bytes += $return
    }
  }
}

probe vfs.write.return {
  if ($return>0) {
    if (devname!="N/A") { /*skip update cache*/
      io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
      device[pid(),execname(),uid(),ppid(),"W"] = devname
      write_bytes += $return
    }
  }
}

probe timer.ms(5000) {
  /* skip non-read/write disk */
  if (read_bytes+write_bytes) {
```

Summarizing Disk Read/Write Traffic

```c
printf("%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n", 
ctime(gettimeofday_s()), 
"Average:", ((read_bytes+write_bytes)/1024)/5, 
"Read:",read_bytes/1024, 
"Write:",write_bytes/1024) 

/* print header */ 
printf("%8s %8s %8s %25s %8s %4s %12s\n", 
"UID","PID","PPID","CMD","DEVICE","T","BYTES") 

/* print top ten I/O */ 
foreach ([process,cmd,userid,parent,action] in io_stat- limit 10) 
printf("%8d %8d %8d %25s %8s %4s %12d\n", 
userid,process,parent,cmd, 
device[process,cmd,userid,parent,action], 
action,io_stat[process,cmd,userid,parent,action]) 

/* clear data */ 
delete io_stat 
delete device 
read_bytes = 0 
write_bytes = 0 
}
```
4.2.2. Tracking I/O Time For Each File Read or Write

This section describes how to monitor the amount of time it takes for each process to read from or write to any file. This is useful if you wish to determine what files are slow to load on a given system.

iotime.stp

```plaintext
global start
global entry_io
global fd_io
global time_io

function timestamp:long() {
    return gettimeofday_us() - start
}

function proc:string() {
    return sprintf("%d (%s)", pid(), execname())
}

probe begin {
    start = gettimeofday_us()
}

global filenames
global filehandles
global fileread
global filewrite

probe syscall.open {
    filenames[pid()] = user_string($filename)
}

probe syscall.open.return {
    if ($return != -1) {
        filehandles[pid(), $return] = filenames[pid()]
        fileread[pid(), $return] = 0
        filewrite[pid(), $return] = 0
    } else {
        printf("%d %s access %s fail\n", timestamp(), proc(), filenames[pid()])
    }
    delete filenames[pid()]
}

probe syscall.read {
    if ($count > 0) {
        fileread[pid(), $fd] += $count
    }
}```
Tracking I/O Time For Each File Read or Write

```c
 t = gettimeofday_us(); p = pid()
 entry_io[p] = t
 fd_io[p] = $fd
}

probe syscall.read.return {
 t = gettimeofday_us(); p = pid()
 fd = fd_io[p]
 time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.write {
 if ($count > 0) {
 filewrite[pid(), $fd] += $count
 }
 t = gettimeofday_us(); p = pid()
 entry_io[p] = t
 fd_io[p] = $fd
}

probe syscall.write.return {
 t = gettimeofday_us(); p = pid()
 fd = fd_io[p]
 time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.close {
 if (filehandles[pid(), $fd] != "") {
 printf("%d %s access %s read: %d write: %d
", timestamp(), proc(),
 filehandles[pid(), $fd], fileread[pid(), $fd], filewrite[pid(), $fd])
 if (@count(time_io[pid(), $fd]))
 printf("%d %s iotime %s time: %d
", timestamp(), proc(),
 filehandles[pid(), $fd], @sum(time_io[pid(), $fd]))
 }
 delete fileread[pid(), $fd]
 delete filewrite[pid(), $fd]
 delete filehandles[pid(), $fd]
 delete fd_io[pid()]
 delete entry_io[pid()]
 delete time_io[pid(),$fd]
}
```

*iotime.stp* tracks each time a system call opens, closes, reads from, and writes to a file. For each file any system call accesses, *iotime.stp* counts the number of microseconds it takes for any reads or writes to finish and tracks the amount of data (in bytes) read from or written to the file.

*iotime.stp* also uses the local variable $count to track the amount of data (in bytes) that any system call attempts to read or write. Note that $return (as used in *disktop.stp* from [Section 4.2.1, "Summarizing Disk Read/Write Traffic"](https://example.com)) stores the actual amount of data read/written. $count can only be used on probes that track data reads or writes (e.g. *syscall.read* and *syscall.write*).

**Example 4.6. iotime.stp Sample Output**

```
[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190 write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]
```
Chapter 4. Useful SystemTap Scripts

Example 4.6, “iotime.stp Sample Output” prints out the following data:

- A timestamp, in microseconds.
- Process ID and process name.
- An access or iotime flag.
- The file accessed.

If a process was able to read or write any data, a pair of access and iotime lines should appear together. The access line’s timestamp refers to the time that a given process started accessing a file; at the end of the line, it will show the amount of data read/written (in bytes). The iotime line will show the amount of time (in microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it simply means that the process did not read or write any data.

4.2.3. Track Cumulative IO

This section describes how to track the cumulative amount of I/O to the system.

traceio.stp

```bash
#!/usr/bin/env stap
traceio.stp
Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
Fixed a bug that allows this to run longer
And added the humanreadable function
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#
global reads, writes, total_io

probe vfs.read.return {
 reads[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

probe vfs.write.return {
 writes[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

function humanreadable(bytes) {
 if (bytes > 1024*1024*1024) {
 return sprintf("%d GiB", bytes/1024/1024/1024)
 } else if (bytes > 1024*1024) {
 return sprintf("%d MiB", bytes/1024/1024)
 } else if (bytes > 1024) {
 return sprintf("%d KiB", bytes/1024)
 } else {
 return sprintf("%d B", bytes)
 }
}
```
traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the cumulative amount of I/O reads and writes done by those ten executables. This information is tracked and printed out in 1-second intervals, and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by desktop.stp from Section 4.2.1, “Summarizing Disk Read/Write Traffic”.

Example 4.7. traceio.stp Sample Output

```plaintext
[...]
Xorg r: 583401 KiB w: 0 KiB
floathers r: 96 KiB w: 7130 KiB
multiload-apple r: 538 KiB w: 537 KiB
sshd r: 71 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
staprun r: 51 KiB w: 51 KiB
snmpd r: 46 KiB w: 0 KiB
pcscd r: 28 KiB w: 0 KiB
irqbalance r: 27 KiB w: 4 KiB
cupsd r: 4 KiB w: 18 KiB
Xorg r: 588140 KiB w: 0 KiB
floathers r: 97 KiB w: 7143 KiB
multiload-apple r: 543 KiB w: 542 KiB
sshd r: 72 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
staprun r: 51 KiB w: 51 KiB
snmpd r: 46 KiB w: 0 KiB
pcscd r: 28 KiB w: 0 KiB
irqbalance r: 27 KiB w: 4 KiB
cupsd r: 4 KiB w: 18 KiB
```

4.2.4. I/O Monitoring (By Device)

This section describes how to monitor I/O activity on a specific device.

traceio2.stp

```plaintext
#!/usr/bin/env stap

global device_of_interest

probe begin {
 /* The following is not the most efficient way to do this.
 One could directly put the result of usrdesc2kerndesc()
```
into device_of_interest. However, want to test out
the other device functions */

dev = usrd2kerndev($1)
device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.write, vfs.read
{
    if (dev == device_of_interest)
        printf ("%s(%d) %s 0x%x
",
                execname(), pid(), probefunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D"
directory, where directory is located in the device you wish to monitor.

The usrd2kerndev() function converts the whole device number into the format understood by
the kernel. The output produced by usrd2kerndev() is used in conjunction with the MKDEV(),
MINOR(), and MAJOR() functions to determine the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the
function it is performing (i.e. vfs_read or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where
0x805 is the whole device number of /home. /home resides in /dev/sda5, which is the device we
wish to monitor.

Example 4.8. traceio2.stp Sample Output

    [...]
synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
 [...]

4.2.5. Monitoring Reads and Writes to a File

This section describes how to monitor reads from and writes to a file in real time.

inodewatch.stp

#! /usr/bin/env stap

probe vfs.write, vfs.read
{
    # dev and ino are defined by vfs.write and vfs.read
    if (dev == MKDEV($1,$2) # major/minor device
        & ino == $3)
        printf ("%s(%d) %s 0x%x/%u
",
                execname(), pid(), probefunc(), dev, ino)
}

inodewatch.stp takes the following information about the file as arguments on the command line:
• The file's major device number.
• The file's minor device number.
• The file's inode number.

To get this information, use `stat -c '%D %i' filename`, where `filename` is an absolute path.

For instance: if you wish to monitor `/etc/crontab`, run `stat -c '%D %i' /etc/crontab` first. This gives the following output:

```
805 1078319
```

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number and the upper digits are the major number. 1078319 is the inode number. To start monitoring `/etc/crontab`, run `stap inodewatch.stp 0x8 0x05 1078319` (The 0x prefixes indicate base-16 values).

The output of this command contains the name and ID of any process performing a read/write, the function it is performing (i.e. `vfs_read` or `vfs_write`), the device number (in hex format), and the inode number. Example 4.9, "inodewatch.stp Sample Output" contains the output of `stap inodewatch.stp 0x8 0x05 1078319` (when `cat /etc/crontab` is executed while the script is running):

```
Example 4.9. inodewatch.stp Sample Output

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319
```

### 4.2.6. Monitoring Changes to File Attributes

This section describes how to monitor if any processes are changing the attributes of a targeted file, in real time.

**inodewatch2-simple.stp**

```verbatim

global ATTR_MODE = 1

probe kernel.function("inode_setattr") {
 dev_nr = $inode->i_sb->s_dev
 inode_nr = $inode->i_ino

 if (dev_nr == ($1 << 20 | $2) && inode_nr == $3 && $attr->ia_valid & ATTR_MODE)
 printf("%s(%d) %s 0x%x/%u %o %d\n", execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode, uid())
}
```

Like `inodewatch.stp` from Section 4.2.5, "Monitoring Reads and Writes to a File", inodewatch2-simple.stp takes the targeted file's device number (in integer format) and inode number as arguments. For more information on how to retrieve this information, refer to Section 4.2.5, "Monitoring Reads and Writes to a File".
Chapter 4. Useful SystemTap Scripts

The output for `inodewatch2-simple.stp` is similar to that of `inodewatch.stp`, except that `inodewatch2-simple.stp` also contains the attribute changes to the monitored file, as well as the ID of the user responsible (`uid()`). Example 4.10, "inodewatch2-simple.stp Sample Output" shows the output of `inodewatch2-simple.stp` while monitoring `/home/joe/bigfile` when user `joe` executes `chmod 777 /home/joe/bigfile` and `chmod 666 /home/joe/bigfile`.

Example 4.10. inodewatch2-simple.stp Sample Output

```
chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500
```

4.3. Profiling

The following sections showcase scripts that profile kernel activity by monitoring function calls.

4.3.1. Counting Function Calls Made

This section describes how to identify how many times the system called a specific kernel function in a 30-second sample. Depending on your use of wildcards, you can also use this script to target multiple kernel functions.

`functioncallcount.stp`

```
#!/usr/bin/env stap
The following line command will probe all the functions
in kernel's memory management code:
#
stap functioncallcount.stp "@mm/*.c"

probe kernel.function(@1).call { # probe functions listed on commandline
called[probfunc()] <<< 1 # add a count efficiently
}

global called

probe end {
 foreach (fn in called-) # Sort by call count (in decreasing order)
 (fn+ in called) # Sort by function name
 printf("%s %d\n", fn, @count(called[fn]))
}

exit()
```

`functioncallcount.stp` takes the targeted kernel function as an argument. The argument supports wildcards, which enables you to target multiple kernel functions up to a certain extent.

The output of `functioncallcount.stp` contains the name of the function called and how many times it was called during the sample time (in alphabetical order). Example 4.11, "functioncallcount.stp Sample Output" contains an excerpt from the output of `stap functioncallcount.stp "@mm/*.c"`:

Example 4.11. functioncallcount.stp Sample Output

```
[...]
__vma_link 97
```
4.3.2. Call Graph Tracing
This section describes how to trace incoming and outgoing function calls.

*para-callgraph.stp*

```plaintext
#!/usr/bin/env stap

function trace(entry_p, extra) {
 printf("%s%<s %s\n",
 thread_indent (entry_p),
 probefunc (),
 extra)
}

probe $1.call { trace(1, $$parms) }
probe $1.return { trace(-1, $$return) }

para-callgraph.stp takes two command-line arguments:

- The function(s) whose entry/exit you’d like to trace ($1).
Chapter 4. Useful SystemTap Scripts

- A second optional trigger function ($2), which enables or disables tracing on a per-thread basis. Tracing in each thread will continue as long as the trigger function has not exited yet.

`para-callgraph.stp` uses `thread_indent()`, as such, its output contains the timestamp, process name, and thread ID of $1 (i.e. the probe function you are tracing). For more information about `thread_indent()`, refer to its entry in SystemTap Functions.

The following example contains an excerpt from the output for `stap para-callgraph.stp 'kernel.function("*@fs/*.c")' 'kernel.function("sys_read")'`:

Example 4.12. para-callgraph.stp Sample Output

```plaintext
[...
267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
269 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
0 gnome-terminal(2921):->fpbuf file=0xfffff80111eebcb0
2 gnome-terminal(2921):<-fput
0 gnome-terminal(2921):->fget_light fd=0x3 fput_needed=0xfffff88010544df54
3 gnome-terminal(2921):<-fget_light return=0xfffff8801116ce900
0 gnome-terminal(2921):->vfs_read file=0xfffff801116ce900 buf=0xc86504 count=0x1000
pos=0xfffff88010544df48
4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 file=0xfffff8801116ce900
ppos=0xfffff88010544df48 count=0x1000
7 gnome-terminal(2921): <-rw_verify_area return=0x1000
12 gnome-terminal(2921): ->do_sync_read filp=0xfffff8801116ce900 buf=0xc86504
len=0x1000 ppos=0xfffff88010544df48
15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
10 gnome-terminal(2921):<-vfs_read return=0xfffffffffffffff5
0 gnome-terminal(2921):->fpbuf file=0xfffff8801116ce900
```

4.3.3. Determining Time Spent in Kernel and User Space

This section illustrates how to determine the amount of time any given thread is spending in either kernel or user-space.

`thread-times.stp`

```plaintext
#!/usr/bin/env stap

probe perf.sw.cpu_clock!, timer.profile {
  // NB: To avoid contention on SMP machines, no global scalars/arrays used,
  // only contention-free statistics aggregates.
  tid=tid(); e=execname()
  if (!user_mode())
    kticks[e,tid] <<< 1
  else
    uticks[e,tid] <<< 1
  ticks <<< 1
  tids[e,tid] <<< 1
}

global uticks, kticks, ticks

global tids

probe timer.s(5), end {
  allticks = @count(ticks)
  printf ("%16s %5s %7s %7s (of %d ticks)\n",
             "comm", "tid", "%user", "%kernel", allticks)
```
thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample, along with the total number of CPU ticks made during the sample. The output of this script also notes the percentage of CPU time each process used, as well as whether that time was spent in kernel space or user space.

Example 4.13, "thread-times.stp Sample Output" contains a 5-second sample of the output for thread-times.stp:

Example 4.13. thread-times.stp Sample Output

<table>
<thead>
<tr>
<th>tid</th>
<th>%user %kernel (of 20002 ticks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00% 87.88%</td>
</tr>
<tr>
<td>32169</td>
<td>5.24% 0.03%</td>
</tr>
<tr>
<td>9815</td>
<td>3.33% 0.36%</td>
</tr>
<tr>
<td>9859</td>
<td>0.95% 0.00%</td>
</tr>
<tr>
<td>3611</td>
<td>0.56% 0.12%</td>
</tr>
<tr>
<td>9861</td>
<td>0.62% 0.01%</td>
</tr>
<tr>
<td>11106</td>
<td>0.37% 0.02%</td>
</tr>
<tr>
<td>32167</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>3897</td>
<td>0.01% 0.08%</td>
</tr>
<tr>
<td>3800</td>
<td>0.03% 0.00%</td>
</tr>
<tr>
<td>2886</td>
<td>0.02% 0.00%</td>
</tr>
<tr>
<td>3243</td>
<td>0.00% 0.01%</td>
</tr>
<tr>
<td>3862</td>
<td>0.01% 0.00%</td>
</tr>
<tr>
<td>3782</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>21767</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>2522</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>3883</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>3775</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>3943</td>
<td>0.00% 0.00%</td>
</tr>
<tr>
<td>3873</td>
<td>0.00% 0.00%</td>
</tr>
</tbody>
</table>

4.3.4. Monitoring Polling Applications

This section describes how to identify and monitor which applications are polling. Doing so allows you to track unnecessary or excessive polling, which can help you pinpoint areas for improvement in terms of CPU usage and power savings.

timeout.stp

#!/usr/bin/env stap
Copyright (C) 2009 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>
Chapter 4. Useful SystemTap Scripts

Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.poll, syscall.epoll_wait {
 if (timeout) to[pid()]=timeout
}

probe syscall.poll.return {
 p = pid()
 if ($return == 0 && to[p] > 0) {
 poll_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 delete to[p]
 }
}

probe syscall.epoll_wait.return {
 p = pid()
 if ($return == 0 && to[p] > 0) {
 epoll_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 delete to[p]
 }
}

probe syscall.select.return {
 if ($return == 0) {
 p = pid()
 select_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.futex.return {
 if (errno_str($return) == "ETIMEDOUT") {
 p = pid()
 futex_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.nanosleep.return {
 if ($return == 0) {
 p = pid()
 nanosleep_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe kernel.function("it_real_fn") {
 p = pid()
 itimer_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
}

probe syscall.rt_sigtimedwait.return {
 if (errno_str($return) == "EAGAIN") {
 p = pid()
 }
}
signal_timeout[p]++
timeout_count[p]++
process[p] = execname()
}
}

probe syscall.exit {
p = pid()
if (p in process) {
delete process[p]
delete timeout_count[p]
delete poll_timeout[p]
delete epoll_timeout[p]
delete select_timeout[p]
delete itimer_timeout[p]
delete futex_timeout[p]
delete nanosleep_timeout[p]
delete signal_timeout[p]
}
}

probe timer.s(1) {
ansi_clear_screen()
printf (" pid | poll select epoll itimer futex nanosleep| signal| process
")
foreach (p in timeout_count- limit 20) {
printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p,
poll_timeout[p], select_timeout[p],
epoll_timeout[p], itimer_timeout[p],
futex_timeout[p], nanosleep_timeout[p],
signal_timeout[p], process[p])
}
}

`timeout.stp` tracks how many times each application used the following system calls over time:

- poll
- select
- epoll
- itimer
- futex
- nanosleep
- signal

In some applications, these system calls are used excessively. As such, they are normally identified as “likely culprits” for polling applications. Note, however, that an application may be using a different system call to poll excessively; sometimes, it is useful to find out the top system calls used by the system (refer to Section 4.3.5, “Tracking Most Frequently Used System Calls” for instructions). Doing so can help you identify any additional suspects, which you can add to `timeout.stp` for tracking.

Example 4.14. timeout.stp Sample Output

```
uid | poll select epoll itimer futex nanosleep signal| process
28937 | 148793       0       0    4727   37288       0       0| firefox
22945 |      0   56949       0       1       0       0       0| scim-bridge
```
Chapter 4. Useful SystemTap Scripts

4.3.5. Tracking Most Frequently Used System Calls

timeout.stp from *Section 4.3.4, "Monitoring Polling Applications"* helps you identify which applications are polling by pointing out which ones used the following system calls most frequently:

- `poll`
- `select`
- `epoll`
- `itimer`
- `futex`
- `nanosleep`
- `signal`

However, in some systems, a different system call might be responsible for excessive polling. If you suspect that a polling application is using a different system call to poll, you need to identify first the top system calls used by the system. To do this, use *topsys.stp*.

topsys.stp

```bash
#!/usr/bin/env stap
#
# This script continuously lists the top 20 system calls in the interval
# 5 seconds
#
global syscalls_count
probe syscall.* {  
0 | 0 0 0 0 36414 0 0 0 | swapper  
4275 | 23140 0 0 1 0 0 0 | mixer_applet2  
4191 | 0 14405 0 0 0 0 0 | scim-launcher  
22941 | 7908 1 0 62 0 0 0 | gnome-terminal  
4261 | 0 0 0 2 0 7622 0 | escd  
3695 | 0 0 0 0 0 7622 0 | gdm-binary  
3483 | 0 7206 0 0 0 0 0 | dhcdbus  
4189 | 6916 0 0 2 0 0 0 | scim-panel-gtk  
1863 | 5767 0 0 0 0 0 0 | iscsid  
2562 | 0 2881 0 1 0 1438 0 | pcscd  
4257 | 4255 0 0 1 0 0 0 | gnome-power-man  
4278 | 3876 0 0 60 0 0 0 | multiload-apple  
4083 | 0 1331 0 1728 0 0 0 | Xorg  
3921 | 1603 0 0 0 0 0 0 | gam_server  
4248 | 1591 0 0 0 0 0 0 | nm-applet  
3165 | 0 1441 0 0 0 0 0 | xterm  
29548 | 0 1440 0 0 0 0 0 | httpd  
1862 | 0 0 0 0 1438 0 | iscsid
```

You can increase the sample time by editing the timer in the second probe (*timer.s()*) . The output of *functioncallcount.stp* contains the name and UID of the top 20 polling applications, along with how many times each application performed each polling system call (over time). *Example 4.14, "timeout.stp Sample Output"* contains an excerpt of the script:
Tracking System Call Volume Per Process

```c
syscalls_count[name]++
}

function print_systop () {
    printf ("%25s %10s
", "SYSCALL", "COUNT")
    foreach (syscall in syscalls_count - limit 20) {
        printf("%25s %10d
", syscall, syscalls_count[syscall])
    }
    delete syscalls_count
}

probe timer.s(5) {
    print_systop ()
    printf("--------------------------------------------------------------
")
}
```

topsys.stp lists the top 20 system calls used by the system per 5-second interval. It also lists how many times each system call was used during that period. Refer to Example 4.15, “topsys.stp Sample Output” for a sample output.

Example 4.15. topsys.stp Sample Output

<table>
<thead>
<tr>
<th>SYSCALL</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>gettimeofday</td>
<td>1857</td>
</tr>
<tr>
<td>read</td>
<td>1821</td>
</tr>
<tr>
<td>ioctl</td>
<td>1568</td>
</tr>
<tr>
<td>poll</td>
<td>1033</td>
</tr>
<tr>
<td>close</td>
<td>638</td>
</tr>
<tr>
<td>open</td>
<td>503</td>
</tr>
<tr>
<td>select</td>
<td>455</td>
</tr>
<tr>
<td>write</td>
<td>391</td>
</tr>
<tr>
<td>writev</td>
<td>335</td>
</tr>
<tr>
<td>futex</td>
<td>303</td>
</tr>
<tr>
<td>recvmsg</td>
<td>251</td>
</tr>
<tr>
<td>socket</td>
<td>137</td>
</tr>
<tr>
<td>clock_gettime</td>
<td>124</td>
</tr>
<tr>
<td>rt_sigprocmask</td>
<td>121</td>
</tr>
<tr>
<td>sendto</td>
<td>120</td>
</tr>
<tr>
<td>setitimer</td>
<td>106</td>
</tr>
<tr>
<td>stat</td>
<td>90</td>
</tr>
<tr>
<td>time</td>
<td>81</td>
</tr>
<tr>
<td>sigreturn</td>
<td>72</td>
</tr>
<tr>
<td>fstat</td>
<td>66</td>
</tr>
</tbody>
</table>

4.3.6. Tracking System Call Volume Per Process

This section illustrates how to determine which processes are performing the highest volume of system calls. In previous sections, we've described how to monitor the top system calls used by the system over time (Section 4.3.5, “Tracking Most Frequently Used System Calls”). We've also described how to identify which applications use a specific set of “polling suspect” system calls the most (Section 4.3.4, “Monitoring Polling Applications”). Monitoring the volume of system calls made by each process provides more data in investigating your system for polling processes and other resource hogs.
syscalls_by_proc.stp

```stap
#!/usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software. You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.
#
# Print the system call count by process name in descending order.
#
global syscalls

probe begin {
  print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
  syscalls[execname()]++
}

probe end {
  printf ("%-10s %-s\n", "#SysCalls", "Process Name")
  foreach (proc in syscalls-)
    printf("%-10d %-s\n", syscalls[proc], proc)
}
```

syscalls_by_proc.stp lists the top 20 processes performing the highest number of system calls. It also lists how many system calls each process performed during the time period. Refer to Example 4.16, "topsys.stp Sample Output" for a sample output.

Example 4.16. topsys.stp Sample Output

```
Collecting data... Type Ctrl-C to exit and display results

#SysCalls  Process Name
1577       multiload-apple
692        synergyc
488        pcsd
376        mixer_applet2
299        gnome-terminal
293        Xorg
206        scim-panel-gtk
95         gnome-power-man
90         arts
85         dhcddb
84         scim-bridge
78         gnome-screensav
66         scim-launcher
[...]```

If you prefer the output to display the process IDs instead of the process names, use the following script instead.
### Identifying Contended User-Space Locks

This section describes how to identify contended user-space locks throughout the system within a specific time period. The ability to identify contended user-space locks can help you investigate hangs that you suspect may be caused by `futex` contentions.

Simply put, a `futex` contention occurs when multiple processes are trying to access the same region of memory. In some cases, this can result in a deadlock between the processes in contention, thereby appearing as an application hang.

To do this, `futexes.stp` probes the `futex` system call.

#### futexes.stp

```bash
#!/usr/bin/env stap

 probes the futex system call.

Copyright (C) 2006 IBM Corp.
#
This file is part of systemtap, and is free software. You can
redistribute it and/or modify it under the terms of the GNU General
Public License (GPL); either version 2, or (at your option) any
later version.
#
Print the system call count by process ID in descending order.
#
global syscalls

 probe begin {
 print("Collecting data... Type Ctrl-C to exit and display results\n")
 }

 probe syscall.* {
 syscalls[pid()]++
 }

 probe end {
 printf("%-10s %-s\n", "#SysCalls", "PID")
 foreach (pid in syscalls-)
 printf("%-10d %-d\n", syscalls[pid], pid)
 }
```

As indicated in the output, you need to manually exit the script in order to display the results. You can add a timed expiration to either script by simply adding a `timer.s()` probe; for example, to instruct the script to expire after 5 seconds, add the following probe to the script:

```bash
probe timer.s(5)
{
 exit()
}
```

---

#### 4.4. Identifying Contended User-Space Locks

This section describes how to identify contended user-space locks throughout the system within a specific time period. The ability to identify contended user-space locks can help you investigate hangs that you suspect may be caused by `futex` contentions.

Simply put, a `futex` contention occurs when multiple processes are trying to access the same region of memory. In some cases, this can result in a deadlock between the processes in contention, thereby appearing as an application hang.

To do this, `futexes.stp` probes the `futex` system call.
# This script tries to identify contended user-space locks by hooking into the futex system call.

global thread_thislock # short
global thread_blocktime #
global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

probe syscall.futex {
    if (op != FUTEX_WAIT) next # don't care about WAKE event originator
    t = tid ()
    process_names[pid()] = execname()
    thread_thislock[t] = $uaddr
    thread_blocktime[t] = gettimeofday_us()
}

probe syscall.futex.return {
    t = tid()
    ts = thread_blocktime[t]
    if (ts) {
        elapsed = gettimeofday_us() - ts
        lock_waits[pid(), thread_thislock[t]] <<< elapsed
        delete thread_blocktime[t]
        delete thread_thislock[t]
    }
}

probe end {
    foreach ([pid+, lock] in lock_waits)
        printf ("%s[%d] lock %p contended %d times, %d avg us\n", process_names[pid], pid, lock, @count(lock_waits[pid,lock]), @avg(lock_waits[pid,lock]))
}

futexes.stp needs to be manually stopped; upon exit, it prints the following information:

- Name and ID of the process responsible for a contention
- The region of memory it contested
- How many times the region of memory was contended
- Average time of contention throughout the probe

Example 4.17, “futexes.stp Sample Output” contains an excerpt from the output of futexes.stp upon exiting the script (after approximately 20 seconds).

Example 4.17. futexes.stp Sample Output

[...]
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]
Understanding SystemTap Errors

This chapter explains the most common errors you may encounter while using SystemTap.

5.1. Parse and Semantic Errors

These types of errors occur while SystemTap attempts to parse and translate the script into C, prior to being converted into a kernel module. For example type errors result from operations that assign invalid values to variables or arrays.

**parse error: expected foo, saw bar**

The script contains a grammatical/typographical error. SystemTap detected type of construct that is incorrect, given the context of the probe.

The following invalid SystemTap script is missing its probe handlers:

```plaintext
probe vfs.read
probe vfs.write
```

It results in the following error message showing that the parser was expecting something other than the **probe** keyword in column 1 of line 2:

```
parse error: expected one of '. , { ? ! { = +='
saw: keyword at perror.stp:2:1
1 parse error(s).
```

**parse error: embedded code in unprivileged script**

The script contains unsafe embedded C code (blocks of code surrounded by `%{ %}`). SystemTap allows you to embed C code in a script, which is useful if there are no tapsets to suit your purposes. However, embedded C constructs are not safe; as such, SystemTap warns you with this error if such constructs appear in the script.

If you are sure of the safety of any similar constructs in the script and are member of **stapdev** group (or have root privileges), run the script in "guru" mode by using the option `-g` (i.e. `stap -g script`).

**semantic error: type mismatch for identifier 'foo' ... string vs. long**

The function **foo** in the script used the wrong type (i.e. `%s` or `%d`). This error will present itself in Example 5.1, "error-variable.stp", because the function `execname()` returns a string the format specifier should be a `%s`, not `%d`.

```
Example 5.1. error-variable.stp
```

```plaintext
probe syscall.open
{
 printf "%d(%d) open\n", execname(), pid());
}
```
Chapter 5. Understanding SystemTap Errors

**semantic error: unresolved type for identifier 'foo'**
The identifier (e.g. a variable) was used, but no type (integer or string) could be determined. This occurs, for instance, if you use a variable in a `printf` statement while the script never assigns a value to the variable.

**semantic error: Expecting symbol or array index expression**
SystemTap could not assign a value to a variable or to a location in an array. The destination for the assignment is not a valid destination. The following example code would generate this error:

```plaintext
probe begin { printf("x") = 1 }
```

**while searching for arity N function, semantic error: unresolved function call**
A function call or array index expression in the script used an invalid number of arguments/parameters. In SystemTap arity can either refer to the number of indices for an array, or the number of parameters to a function.

**semantic error: array locals not supported, missing global declaration?**
The script used an array operation without declaring the array as a global variable (global variables can be declared after their use in SystemTap scripts). Similar messages appear if an array is used, but with inconsistent arities.

**semantic error: variable 'foo' modified during 'foreach' iteration**
The array `foo` is being modified (being assigned to or deleted from) within an active `foreach` loop. This error also displays if an operation within the script performs a function call within the `foreach` loop.

**semantic error: probe point mismatch at position N, while resolving probe point foo**
SystemTap did not understand what the event or SystemTap function `foo` refers to. This usually means that SystemTap could not find a match for `foo` in the tapset library. The `N` refers to the line and column of the error.

**semantic error: no match for probe point, while resolving probe point foo**
The events/handler function `foo` could not be resolved altogether, for a variety of reasons. This error occurs when the script contains the event `kernel.function("blah")`, and `blah` does not exist. In some cases, the error could also mean the script contains an invalid kernel file name or source line number.

**semantic error: unresolved target-symbol expression**
A handler in the script references a target variable, but the value of the variable could not be resolved. This error could also mean that a handler is referencing a target variable that is not valid in the context when it was referenced. This may be a result of compiler optimization of the generated code.
semantic error: libdwfl failure
There was a problem processing the debugging information. In most cases, this error results from the installation of a kernel-debuginfo RPM whose version does not match the probed kernel exactly. The installed kernel-debuginfo RPM itself may have some consistency/correctness problems.

semantic error: cannot find foo debuginfo
SystemTap could not find a suitable kernel-debuginfo at all.

5.2. Run Time Errors and Warnings
Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is collecting data on the system.

WARNING: Number of errors: N, skipped probes: M
Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number of probes that were not executed due to conditions such as too much time required to execute event handlers over an interval of time.

division by 0
The script code performed an invalid division.

aggregate element not found
A statistics extractor function other than @count was invoked on an aggregate that has not had any values accumulated yet. This is similar to a division by zero.

aggregation overflow
An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded
Too many levels of function call nesting were attempted. The default nesting of function calls allowed is 10.

MAXACTION exceeded
The probe handler attempted to execute too many statements in the probe handler. The default number of actions allowed in a probe handler is 1000.

kernel/user string copy fault at ADDR
The probe handler attempted to copy a string from kernel or user-space at an invalid address (ADDR).

pointer dereference fault
There was a fault encountered during a pointer dereference operation such as a target variable evaluation.
Chapter 6.

References

This chapter enumerates other references for more information about SystemTap. It is advisable that you refer to these sources in the course of writing advanced probes and tapsets.

SystemTap Wiki
The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and development of SystemTap. You can find it at http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial
Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a more appropriate reference for users with intermediate to advanced knowledge of C++ and kernel development, and can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes
The stapprobes man page enumerates a variety of probe points supported by SystemTap, along with additional aliases defined by the SystemTap tapset library. The bottom of the man page includes a list of other man pages enumerating similar probe points for specific system components, such as stapprobes.scsi, stapprobes.kprocess, stapprobes.signal, etc.

man stapfuncs
The stapfuncs man page enumerates numerous functions supported by the SystemTap tapset library, along with the prescribed syntax for each one. Note, however, that this is not a complete list of all supported functions; there are more undocumented functions available.

SystemTap Language Reference
This document is a comprehensive reference of SystemTap's language constructs and syntax. It is recommended for users with a rudimentary to intermediate knowledge of C++ and other similar programming languages. The SystemTap Language Reference is available to all users at http://sourceware.org/systemtap/langref/

Tapset Developers Guide
Once you have sufficient proficiency in writing SystemTap scripts, you can then try your hand out on writing your own tapsets. The Tapset Developers Guide describes how to add functions to your tapset library.

Test Suite
The systemtap-testsuite package allows you to test the entire SystemTap toolchain without having to build from source. In addition, it also contains numerous examples of SystemTap scripts you can study and test; some of these scripts are also documented in Chapter 4, Useful SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in /usr/share/systemtap/systemtap/testsuite/systemtap.examples.
Appendix A. Revision History

Revision 2.0  Mon Jul 20 2009  Don Domingo ddomingo@redhat.com
includes 5.4 minor updates and additional script "dropwatch.stp"

Revision 1.0  Wed Jun 17 2009  Don Domingo ddomingo@redhat.com
Building+pushing to RHEL
Index

Symbols

$\text{count}$
  sample usage
    local variables, 37

$\text{return}$
  sample usage
    local variables, 35, 39

@avg (integer extractor)
  computing for statistical aggregates
    array operations, 27

@count (integer extractor)
  computing for statistical aggregates
    array operations, 27

@max (integer extractor)
  computing for statistical aggregates
    array operations, 27

@min (integer extractor)
  computing for statistical aggregates
    array operations, 27

@sum (integer extractor)
  computing for statistical aggregates
    array operations, 27

A

adding values to statistical aggregates
  computing for statistical aggregates
    array operations, 27

advantages of cross-instrumentation, 5

aggregate element not found
  runtime errors/warnings
    understanding SystemTap errors, 55

aggregates (statistical)
  array operations, 27

aggregation overflow
  runtime errors/warnings
    understanding SystemTap errors, 55

algebraic formulas using arrays
  reading values from arrays
    array operations, 22

architecture notation, determining, 6

architecture of SystemTap, 11

array locals not supported
  parse/semantics error
    understanding SystemTap errors, 54

array operations
  assigning associated values, 22
    associating timestamps to process names, 22
  associative arrays, 22

clearing arrays/array elements, 24

delete operator, 24

multiple array operations within the same probe, 25

virtual file system reads (non-cumulative), tallying, 25

computing for statistical aggregates, 27
  @avg (integer extractor), 27
  @count (integer extractor), 27
  @max (integer extractor), 27
  @min (integer extractor), 27
  @sum (integer extractor), 27

adding values to statistical aggregates, 27

count (operator), 27

extracting data collected by statistical aggregates, 27

conditional statements, using arrays in, 26

testing for array membership, 26

deleting arrays and array elements, 24

incrementing associated values, 23

 tallying virtual file system reads (VFS reads), 23

multiple elements in an array, 23

processing multiple elements in an array, 23

 cumulative virtual file system reads, tallying, 24

 foreach, 24

iterations, processing elements in an array as, 24

limiting the output of foreach, 24

ordering the output of foreach, 24

reading values from arrays, 22

 computing for timestamp deltas, 22

empty unique keys, 23

using arrays in simple computations, 22

appearances, 21

(see also associative arrays)

assigning associated values
  array operations, 22
    associating timestamps to process names, 22
    associating timestamps to process names
      array operations, 22

associated values
  introduction
    arrays, 21

associating timestamps to process names
  assigning associated values
    array operations, 22

associative arrays
  introduction, 21
    associated values, 21
    example, 21
    index expression, 21
    key pairs, 21
    syntax, 21

  example, 21

  index expression, 21

  key pairs, 21

  syntax, 21
Index

unique keys, 21
asynchronous events
  Events, 14

B
begin
  Events, 14
building instrumentation modules from SystemTap scripts, 5
building kernel modules from SystemTap scripts, 5

C
call graph tracing
  examples of SystemTap scripts, 43
capabilities of SystemTap
  introduction, 1
changes to file attributes, monitoring
  examples of SystemTap scripts, 41
clearing arrays/array elements
  array operations, 24
delete operator, 24
  multiple array operations within the same probe, 25
virtual file system reads (non-cumulative), tallying, 25
command-line arguments
  SystemTap handler constructs
    handlers, 21
compiling instrumentation/kernel modules from SystemTap scripts, 5
components
  SystemTap scripts
    introduction, 11
computing for statistical aggregates
  array operations, 27
    @avg (integer extractor), 27
    @count (integer extractor), 27
    @max (integer extractor), 27
    @min (integer extractor), 27
    @sum (integer extractor), 27
  adding values to statistical aggregates, 27
  count (operator), 27
  extracting data collected by statistical aggregates, 27
computing for timestamp deltas
  reading values from arrays
    array operations, 22
conditional operators
  conditional statements
    handlers, 20
conditional statements, using arrays in array operations, 26
testing for array membership, 26
CONFIG_HZ, computing for, 19
contended user-space locks (futex contentions), identifying
  examples of SystemTap scripts, 51
copy fault
  runtime errors/warnings
  understanding SystemTap errors, 55
count operator
  computing for statistical aggregates
    array (operator), 27
counting function calls
  examples of SystemTap scripts, 42
CPU ticks
  examples of SystemTap scripts, 45
cpu()
  functions, 16
cross-compiling, 5
cross-instrumentation
  advantages of, 5
building kernel modules from SystemTap scripts, 5
configuration
  host system and target system, 6
generating instrumentation from SystemTap scripts, 5
host system, 6
instrumentation module, 6
target kernel, 6
target system, 6
ctime()
  functions, 16
ctime(), example of usage
  script examples, 35
cumulative I/O, tracking
  examples of SystemTap scripts, 38
cumulative virtual file system reads, tallying
  processing multiple elements in an array
    array operations, 24
D
delete operator
  clearing arrays/array elements
    array operations, 24
determining architecture notation, 6
determining the kernel version, 3
determining time spent in kernel and user space
  examples of SystemTap scripts, 44
device I/O, monitoring
  examples of SystemTap scripts, 39
device number of a file (integer format)
  examples of SystemTap scripts, 41
disk I/O traffic, summarizing
  script examples, 34
division by 0
runtime errors/warnings
understanding SystemTap errors, 55
documentation goals
Introduction, 1

E
embedded code in unprivileged script
parse/semantics error
understanding SystemTap errors, 53
empty unique keys
reading values from arrays
array operations, 23
end
Events, 14
events
parse/semantics error, 53
embedded code in unprivileged script, 53
expected symbol/array index expression, 54
grammatical/typographical script error, 53
guru mode, 53
invalid values to variables/arrays, 53
libdwfl failure, 55
no match for probe point, 54
non-global arrays, 54
probe mismatch, 54
type mismatch for identifier, 53
unresolved function call, 54
unresolved target-symbol expression, 54
unresolved type for identifier, 54
variable modified during 'foreach', 54
runtime errors/warnings, 55
aggregate element not found, 55
aggregation overflow, 55
copy fault, 55
division by 0, 55
MAXACTION exceeded, 55
MAXNESTING exceeded, 55
number of errors: N, skipped probes: M, 55
pointer dereference fault, 55
event types
Understanding How SystemTap Works, 11

Events
asynchronous events, 14
begin, 14
end, 14
examples of synchronous and asynchronous events, 13
introduction, 13
kernel.function("function"), 13
kernel.trace("tracepoint"), 13
module("module"), 14
synchronous events, 13
syscall.system_call, 13
timer events, 14
vfs.file_operation, 13
wildcards, 13
events and handlers, 11
events wildcards, 13
example introduction
arrays, 21
example of multiple command-line arguments
elements of SystemTap scripts, 43
examples of synchronous and asynchronous events
Events, 13
examples of SystemTap scripts, 29
call graph tracing, 43
CPU ticks, 45
ctime(), example of usage, 35
determining time spent in kernel and user space, 44
file device number (integer format), 41
futex system call, 51
identifying contended user-space locks (i.e. futex contentions), 51
if/else conditionals, alternative syntax, 30
inode number, 41
monitoring changes to file attributes, 41
monitoring device I/O, 39
monitoring I/O time, 36
monitoring incoming TCP connections, 32
monitoring polling applications, 45
monitoring reads and writes to a file, 40
monitoring system calls, 48
monitoring system calls (volume per process), 49
multiple command-line arguments, example of, 43
net/socket.c, tracing functions from, 31
network profiling, 29, 32
process deadlocks (arising from futex contentions), 51
stat -c, determining file device number (integer format), 41
stat -c, determining whole device number, 40
summarizing disk I/O traffic, 34
tallying function calls, 42
thread-indent(), sample usage, 44
timer.ms(), sample usage, 42
timer.s(), sample usage, 47, 49
tracing functions called in network socket code, 31
tracking cumulative I/O, 38
trigger function, 43
usrdev2kerndev(), 40
whole device number (usage as a command-line argument), 40
exceeded MAXACTION runtime errors/warnings
  understanding SystemTap errors, 55
exceeded MAXNESTING runtime errors/warnings
  understanding SystemTap errors, 55
exit() functions, 15
expected symbol/array index expression parse/semantics error
  understanding SystemTap errors, 54
extracting data collected by statistical aggregates computing for statistical aggregates array operations, 27

F
feedback contact information for this manual, viii
file attributes, monitoring changes to examples of SystemTap scripts, 41
file device number (integer format) examples of SystemTap scripts, 41
file reads/writes, monitoring examples of SystemTap scripts, 40
flight recorder mode, 8
  file mode, 9
  in-memory mode, 9
for loops conditional statements handlers, 20
foreach processing multiple elements in an array array operations, 24
format introduction arrays, 21
format and syntax print(), 16
  SystemTap handler constructs handlers, 18
  SystemTap scripts introduction, 12
format specifiers print(), 15
format strings printf(), 15
function call (unresolved) parse/semantics error
  understanding SystemTap errors, 54
function calls (incoming/outgoing), tracing examples of SystemTap scripts, 43
function calls, tallying examples of SystemTap scripts, 42
functions, 16
  cpu(), 16
cctime(), 16
gettimeofday_s(), 16
pp(), 17
SystemTap scripts introduction, 12
target(), 18
thread-indent(), 17
tid(), 16, 16
uid(), 16
functions (used in handlers) exit(), 15
functions called in network socket code, tracing examples of SystemTap scripts, 31
futex contention, definition examples of SystemTap scripts, 51
futex contentions, identifying examples of SystemTap scripts, 51
futex system call examples of SystemTap scripts, 51

G
gmtimeofday_s() functions, 16
global SystemTap handler constructs handlers, 18
goals, documentation Introduction, 1
grammatical/typographical script error parse/semantics error
  understanding SystemTap errors, 53
guru mode parse/semantics error
  understanding SystemTap errors, 53

H
handler functions, 16
handlers conditional statements, 19
  conditional operators, 20
  for loops, 20
  if/else, 19
  while loops, 20
introduction, 15
SystemTap handler constructs, 18
  command-line arguments, 21
  global, 18
  syntax and format, 18
  variable notations, 21
  variables, 18
handlers and events, 11
SystemTap scripts
introduction, 11
heaviest disk reads/writes, identifying
script examples, 34
help
getting help, vii
host system
cross-instrumentation, 6
host system and target system
cross-instrumentation
configuration, 6
I
I/O monitoring (by device)
examples of SystemTap scripts, 39
I/O time, monitoring
examples of SystemTap scripts, 36
I/O traffic, summarizing
script examples, 34
identifier type mismatch
parse/semantics error
understanding SystemTap errors, 53
identifying contended user-space locks (i.e. futex
contentions)
examples of SystemTap scripts, 51
identifying heaviest disk reads/writes
script examples, 34
if/else
conditional statements
handlers, 19
if/else conditionals, alternative syntax
examples of SystemTap scripts, 30
if/else statements, using arrays in
array operations, 26
incoming TCP connections, monitoring
examples of SystemTap scripts, 32
incoming/outgoing function calls, tracing
examples of SystemTap scripts, 43
incrementing associated values
array operations, 23
tallying virtual file system reads (VFS
reads), 23
index expression
introduction
arrays, 21
initial testing, 5
inode number
examples of SystemTap scripts, 41
Installation
initial testing, 5
kernel information packages, 3
kernel version, determining the, 3
required packages, 3
rheldebugurl.sh, 4
Setup and Installation, 3
systemtap package, 3
systemtap-runtime package, 3
instrumentation module
cross-instrumentation, 6
instrumentation modules from SystemTap scripts,
building, 5
integer extractors
computing for statistical aggregates
array operations, 27
Introduction
capabilities of SystemTap, 1
documentation goals, 1
goals, documentation, 1
performance monitoring, 1
invalid division
runtime errors/warnings
understanding SystemTap errors, 55
invalid values to variables/arrays
parse/semantics error
understanding SystemTap errors, 53
iterations, processing elements in an array as
processing multiple elements in an array
array operations, 24
K
kernel and user space, determining time spent in
examples of SystemTap scripts, 44
kernel information packages, 3
kernel modules from SystemTap scripts, building,
5
kernel version, determining the, 3
kernel.function("function")
Events, 13
kernel.trace("tracepoint")
Events, 13
key pairs
introduction
arrays, 21
L
libdwf failure
parse/semantics error
understanding SystemTap errors, 55
limiting the output of foreach
processing multiple elements in an array
array operations, 24
local variables
name, 18
sample usage
$count, 37
$return, 35, 39
Index

M
MAXACTION exceeded
- runtime errors/warnings
  - understanding SystemTap errors, 55
MAXNESTING exceeded
- runtime errors/warnings
  - understanding SystemTap errors, 55
membership (in array), testing for
  - conditional statements, using arrays in
  - array operations, 26
module("module")
  - Events, 14
monitoring changes to file attributes
  - examples of SystemTap scripts, 41
monitoring cumulative I/O
  - examples of SystemTap scripts, 38
monitoring device I/O
  - examples of SystemTap scripts, 39
monitoring I/O time
  - examples of SystemTap scripts, 36
monitoring incoming TCP connections
  - examples of SystemTap scripts, 32
monitoring polling applications
  - examples of SystemTap scripts, 45
monitoring reads and writes to a file
  - examples of SystemTap scripts, 40
monitoring system calls
  - examples of SystemTap scripts, 48
monitoring system calls (volume per process)
  - examples of SystemTap scripts, 49
multiple array operations within the same probe
  - clearing arrays/array elements
    - array operations, 25
multiple command-line arguments, example of
  - examples of SystemTap scripts, 43
multiple elements in an array
  - array operations, 23

N
name
  - local variables, 18
net/socket.c, tracing functions from
  - examples of SystemTap scripts, 31
network profiling
  - examples of SystemTap scripts, 29, 32
network socket code, tracing functions called in
  - examples of SystemTap scripts, 31
network traffic, monitoring
  - examples of SystemTap scripts, 29, 32
no match for probe point
  - parse/semantics error
    - understanding SystemTap errors, 54
non-global arrays

parse/semantics error
  - understanding SystemTap errors, 54
number of errors: N, skipped probes: M
runtime errors/warnings
  - understanding SystemTap errors, 55

O
operations
  - assigning associated values
    - associating timestamps to process names, 22
  - associative arrays, 22
clearing arrays/array elements, 24
delete operator, 24
multiple array operations within the same probe, 25
virtual file system reads (non-cumulative), tallying, 25
computing for statistical aggregates, 27
  - @avg (integer extractor), 27
  - @count (integer extractor), 27
  - @max (integer extractor), 27
  - @min (integer extractor), 27
  - @sum (integer extractor), 27
adding values to statistical aggregates, 27
count (operator), 27
extracting data collected by statistical aggregates, 27
conditional statements, using arrays in, 26
testing for array membership, 26
deleting arrays and array elements, 24
incrementing associated values, 23
tallying virtual file system reads (VFS reads), 23
multiple elements in an array, 23
processing multiple elements in an array, 23
cumulative virtual file system reads, tallying, 24
foreach, 24
iterations, processing elements in an array as, 24
limiting the output of foreach, 24
ordering the output of foreach, 24
reading values from arrays, 22
computing for timestamp deltas, 22
empty unique keys, 23
using arrays in simple computations, 22
options, stap
  - Usage, 7
ordering the output of foreach
  - processing multiple elements in an array
    - array operations, 24
overflow of aggregation
runtime errors/warnings
understanding SystemTap errors, 55

P
packages required to run SystemTap, 3
parse/semantics error
understanding SystemTap errors, 53
   embedded code in unprivileged script, 53
   expected symbol/array index expression, 54
   grammatical/typographical script error, 53
   guru mode, 53
   invalid values to variables/arrays, 53
   libdwfl failure, 55
   no match for probe point, 54
   non-global arrays, 54
   probe mismatch, 54
   type mismatch for identifier, 53
   unresolved function call, 54
   unresolved target-symbol expression, 54
   unresolved type for identifier, 54
   variable modified during 'foreach', 54
performance monitoring
   introduction, 1
pointer dereference fault
   runtime errors/warnings
      understanding SystemTap errors, 55
polling applications, monitoring
   examples of SystemTap scripts, 45
pp()
   functions, 17
printf()
   format specifiers, 15
   format strings, 15, 15
   syntax and format, 16
printing I/O activity (cumulative)
   examples of SystemTap scripts, 38
probe mismatch
   parse/semantics error
      understanding SystemTap errors, 54
   probe point (no match for)
      parse/semantics error
         understanding SystemTap errors, 54
probes
   SystemTap scripts
      introduction, 12
process deadlocks (arising from futex contentsions)
   examples of SystemTap scripts, 51
processing multiple elements in an array
   array operations, 23
   cumulative virtual file system reads, tallying
      array operations, 24
   foreach
      array operations, 24
      limiting the output of foreach
array operations, 24
ordering the output of foreach
array operations, 24
profiling the network
   examples of SystemTap scripts, 29, 32
R
reading values from arrays
   array operations, 22
   empty unique keys, 23
   using arrays in simple computations, 22
   computing for timestamp deltas
   array operations, 22
reads/writes to a file, monitoring
   examples of SystemTap scripts, 40
required packages, 3
rheldebugurl.sh, 4
RPMs required to run SystemTap, 3
running scripts from standard input, 8
running SystemTap scripts
   Usage, 7
runtime errors/warnings
understanding SystemTap errors, 55
   aggregate element not found, 55
   aggregation overflow, 55
   copy fault, 55
   division by 0, 55
   MAXACTION exceeded, 55
   MAXNESTING exceeded, 55
   number of errors: N, skipped probes: M, 55
   pointer dereference fault, 55
S
script examples
   call graph tracing, 43
   CPU ticks, 45
cetime(), example of usage, 35
determining time spent in kernel and user space, 44
file device number (integer format), 41
futex system call, 51
identifying contended user-space locks (i.e. futex contentions), 51
if/else conditionals, alternative syntax, 30
inode number, 41
monitoring changes to file attributes, 41
monitoring device I/O, 39
monitoring I/O time, 36
monitoring incoming TCP connections, 32
monitoring polling applications, 45
monitoring reads and writes to a file, 40
monitoring system calls, 48
monitoring system calls (volume per process), 49
multiple command-line arguments, example of, 43
net/socket.c, tracing functions from, 31
network profiling, 29, 32
process deadlocks (arising from futex contentions), 51
stat -c, determining file device number (integer format), 41
stat -c, determining whole device number, 40
summarizing disk I/O traffic, 34
tallying function calls, 42
thread_indent(), sample usage, 44
timer.ms(), sample usage, 42
timer.s(), sample usage, 47, 49
tracing functions called in network socket code, 31
tracking cumulative I/O, 38
trigger function, 43
usrdev2kerndev(), 40
whole device number (usage as a command-line argument), 40

scripts
introduction, 11
components, 11
events and handlers, 11
format and syntax, 12
functions, 12
probes, 12
statement blocks, 12

sessions, SystemTap, 11
Setup and Installation, 3
standard input, running scripts from
   Usage, 8
stap
   Usage, 7
stap options, 7
stapdev
   Usage, 7
staprun
   Usage, 7
stapusr
   Usage, 7
stat -c, determining file device number (integer format)
   examples of SystemTap scripts, 41
stat -c, determining whole device number
   examples of SystemTap scripts, 40
statement blocks
   SystemTap scripts
      introduction, 12
statistical aggregates
   array operations, 27
summarizing disk I/O traffic
   script examples, 34, 34
synchronous events
   Events, 13
syntax
   introduction
      arrays, 21
syntax and format
   printf(), 16
SystemTap handler constructs
   handlers, 18
SystemTap scripts
   introduction, 12
syscall.system_call
   Events, 13
system calls volume (per process), monitoring
   examples of SystemTap scripts, 49
system calls, monitoring
   examples of SystemTap scripts, 48
SystemTap architecture, 11
SystemTap handlers
   SystemTap handler constructs, 18
      syntax and format, 18
systemtap package, 3
SystemTap script functions, 16
SystemTap scripts
   introduction, 11
      components, 11
      events and handlers, 11
      format and syntax, 12
      functions, 12
      probes, 12
      statement blocks, 12
useful examples, 29
SystemTap scripts, how to run, 7
SystemTap sessions, 11
SystemTap statements
   conditional statements, 19
      conditional operators, 20
      for loops, 20
      if/else, 19
      while loops, 20
SystemTap handler constructs
   command-line arguments, 21
      global, 18
      variable notations, 21
      variables, 18
systemtap-runtime package, 3
systemtap-testsuite package
   sample scripts, 29

T
tallying function calls
   examples of SystemTap scripts, 42
tallying virtual file system reads (VFS reads)
  incrementing associated values
  array operations, 23
Tapsets
  definition of, 28
target kernel
  cross-instrumentation, 6
target system
  cross-instrumentation, 6
target system and host system
  configuration, 6
target()
  functions, 18
target-symbol expression, unresolved
  parse/semantics error
  understanding SystemTap errors, 54
TCP connections (incoming), monitoring
  examples of SystemTap scripts, 32
testing for array membership
  conditional statements, using arrays in
  array operations, 26
testing, initial, 5
thread_indent()
  functions, 17
thread_indent(), sample usage
  examples of SystemTap scripts, 44
tid()
  functions, 16
time of I/O
  examples of SystemTap scripts, 36
time spent in kernel/user space, determining
  examples of SystemTap scripts, 44
timer events
  Events, 14
timer.ms(), sample usage
  examples of SystemTap scripts, 42
timer.s(), sample usage
  examples of SystemTap scripts, 47, 49
timestamp deltas, computing for
  reading values from arrays
  array operations, 22
timestamps, association thereof to process
  names
  assigning associated values
  array operations, 22
tracepoint, 13, 32
tracing call graph
  examples of SystemTap scripts, 43
tracing functions called in network socket code
  examples of SystemTap scripts, 31
tracing incoming/outgoing function calls
  examples of SystemTap scripts, 43
tracking cumulative I/O
  examples of SystemTap scripts, 38
trigger function
  examples of SystemTap scripts, 43
type mismatch for identifier
  parse/semantics error
  understanding SystemTap errors, 53
typographical script error
  parse/semantics error
  understanding SystemTap errors, 53
U
uid()
  functions, 16
uname -m, 6
uname -r, 3
understanding SystemTap errors
  runtime errors/warnings, 55
    aggregate element not found, 55
    aggregation overflow, 55
    copy fault, 55
    division by 0, 55
    MAXACTION exceeded, 55
    MAXNESTING exceeded, 55
    number of errors: N, skipped probes: M, 55
    pointer dereference fault, 55
Understanding How SystemTap Works, 11
  architecture, 11
  event types, 11
  events and handlers, 11
  SystemTap sessions, 11
understanding SystemTap errors
  parse/semantics error, 53
    expected symbol/array index expression, 54
    grammatical/typographical script error, 53
    guru mode, 53
    invalid values to variables/arrays, 53
    libdwfl failure, 55
    no match for probe point, 54
    non-global arrays, 54
    probe mismatch, 54
    type mismatch for identifier, 53
    unresolved function call, 54
    unresolved target-symbol expression, 54
    unresolved type for identifier, 54
    variable modified during 'foreach', 54
unique keys
  introduction
    arrays, 21
unprivileged script, embedded code in
  parse/semantics error
  understanding SystemTap errors, 53
unresolved function call
  parse/semantics error
  understanding SystemTap errors, 54
unresolved target-symbol expression
  parse/semantics error
  understanding SystemTap errors, 54
unresolved type for identifier
  parse/semantics error
  understanding SystemTap errors, 54
unsafe embedded code in unprivileged script
  parse/semantics error
  understanding SystemTap errors, 53
Usage
  options, stap, 7
  running SystemTap scripts, 7
  standard input, running scripts from, 8
  stap, 7
  stapdev, 7
  staprun, 7
  stapusr, 7
useful examples of SystemTap scripts, 29
user and kernel space, determining time spent in
  examples of SystemTap scripts, 44
using arrays in simple computations
  reading values from arrays
    array operations, 22
Using SystemTap, 3
usrdev2kerndev()
  examples of SystemTap scripts, 40
V
values, assignment of
  array operations, 22
variable modified during 'foreach'
  parse/semantics error
  understanding SystemTap errors, 54
variable notations
  SystemTap handler constructs
    handlers, 21
variables
  SystemTap handler constructs
    handlers, 18
variables (local)
  name, 18
  sample usage
    $count, 37
    $return, 35, 39
VFS reads, tallying of
  incrementing associated values
    array operations, 23
vfs.file_operation
  Events, 13
virtual file system reads (cumulative), tallying
  processing multiple elements in an array
    array operations, 24
virtual file system reads (non-cumulative), tallying
  clearing arrays/array elements
array operations, 25
W
while loops
  conditional statements
    handlers, 20
whole device number (usage as a command-line argument)
  examples of SystemTap scripts, 40
wildcards in events, 13
writes/reads to a file, monitoring
  examples of SystemTap scripts, 40