CVE Summary
The following CVE are available for all releases offered through Unbreakable Linux Network (ULN).
Synopsis
CVE-2025-38637In the Linux kernel, the following vulnerability has been resolved: net_sched: skbprio: Remove overly strict queue assertions In the current implementation, skbprio enqueue/dequeue contains an assertion that fails under certain conditions when SKBPRIO is used as a child qdisc under TBF with specific parameters. The failure occurs because TBF sometimes peeks at packets in the child qdisc without actually dequeuing them when tokens are unavailable. This peek operation creates a discrepancy between the parent and child qdisc queue length counters. When TBF later receives a high-priority packet, SKBPRIO's queue length may show a different value than what's reflected in its internal priority queue tracking, triggering the assertion. The fix removes this overly strict assertions in SKBPRIO, they are not necessary at all.2025-04-18
CVE-2025-37943In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: Fix invalid data access in ath12k_dp_rx_h_undecap_nwifi In certain cases, hardware might provide packets with a length greater than the maximum native Wi-Fi header length. This can lead to accessing and modifying fields in the header within the ath12k_dp_rx_h_undecap_nwifi function for DP_RX_DECAP_TYPE_NATIVE_WIFI decap type and potentially resulting in invalid data access and memory corruption. Add a sanity check before processing the SKB to prevent invalid data access in the undecap native Wi-Fi function for the DP_RX_DECAP_TYPE_NATIVE_WIFI decap type. Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-12025-05-20
CVE-2025-37937In the Linux kernel, the following vulnerability has been resolved: objtool, media: dib8000: Prevent divide-by-zero in dib8000_set_dds() If dib8000_set_dds()'s call to dib8000_read32() returns zero, the result is a divide-by-zero. Prevent that from happening. Fixes the following warning with an UBSAN kernel: drivers/media/dvb-frontends/dib8000.o: warning: objtool: dib8000_tune() falls through to next function dib8096p_cfg_DibRx()2025-05-20
CVE-2025-37821In the Linux kernel, the following vulnerability has been resolved: sched/eevdf: Fix se->slice being set to U64_MAX and resulting crash There is a code path in dequeue_entities() that can set the slice of a sched_entity to U64_MAX, which sometimes results in a crash. The offending case is when dequeue_entities() is called to dequeue a delayed group entity, and then the entity's parent's dequeue is delayed. In that case: 1. In the if (entity_is_task(se)) else block at the beginning of dequeue_entities(), slice is set to cfs_rq_min_slice(group_cfs_rq(se)). If the entity was delayed, then it has no queued tasks, so cfs_rq_min_slice() returns U64_MAX. 2. The first for_each_sched_entity() loop dequeues the entity. 3. If the entity was its parent's only child, then the next iteration tries to dequeue the parent. 4. If the parent's dequeue needs to be delayed, then it breaks from the first for_each_sched_entity() loop _without updating slice_. 5. The second for_each_sched_entity() loop sets the parent's ->slice to the saved slice, which is still U64_MAX. This throws off subsequent calculations with potentially catastrophic results. A manifestation we saw in production was: 6. In update_entity_lag(), se->slice is used to calculate limit, which ends up as a huge negative number. 7. limit is used in se->vlag = clamp(vlag, -limit, limit). Because limit is negative, vlag > limit, so se->vlag is set to the same huge negative number. 8. In place_entity(), se->vlag is scaled, which overflows and results in another huge (positive or negative) number. 9. The adjusted lag is subtracted from se->vruntime, which increases or decreases se->vruntime by a huge number. 10. pick_eevdf() calls entity_eligible()/vruntime_eligible(), which incorrectly returns false because the vruntime is so far from the other vruntimes on the queue, causing the (vruntime - cfs_rq->min_vruntime) * load calulation to overflow. 11. Nothing appears to be eligible, so pick_eevdf() returns NULL. 12. pick_next_entity() tries to dereference the return value of pick_eevdf() and crashes. Dumping the cfs_rq states from the core dumps with drgn showed tell-tale huge vruntime ranges and bogus vlag values, and I also traced se->slice being set to U64_MAX on live systems (which was usually "benign" since the rest of the runqueue needed to be in a particular state to crash). Fix it in dequeue_entities() by always setting slice from the first non-empty cfs_rq.2025-05-08
CVE-2025-37785In the Linux kernel, the following vulnerability has been resolved: ext4: fix OOB read when checking dotdot dir Mounting a corrupted filesystem with directory which contains '.' dir entry with rec_len == block size results in out-of-bounds read (later on, when the corrupted directory is removed). ext4_empty_dir() assumes every ext4 directory contains at least '.' and '..' as directory entries in the first data block. It first loads the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry() and then uses its rec_len member to compute the location of '..' dir entry (in ext4_next_entry). It assumes the '..' dir entry fits into the same data block. If the rec_len of '.' is precisely one block (4KB), it slips through the sanity checks (it is considered the last directory entry in the data block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the memory slot allocated to the data block. The following call to ext4_check_dir_entry() on new value of de then dereferences this pointer which results in out-of-bounds mem access. Fix this by extending __ext4_check_dir_entry() to check for '.' dir entries that reach the end of data block. Make sure to ignore the phony dir entries for checksum (by checking name_len for non-zero). Note: This is reported by KASAN as use-after-free in case another structure was recently freed from the slot past the bound, but it is really an OOB read. This issue was found by syzkaller tool. Call Trace: [ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710 [ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375 [ 38.595158] [ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1 [ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 38.595304] Call Trace: [ 38.595308] [ 38.595311] dump_stack_lvl+0xa7/0xd0 [ 38.595325] print_address_description.constprop.0+0x2c/0x3f0 [ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595349] print_report+0xaa/0x250 [ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595368] ? kasan_addr_to_slab+0x9/0x90 [ 38.595378] kasan_report+0xab/0xe0 [ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595400] __ext4_check_dir_entry+0x67e/0x710 [ 38.595410] ext4_empty_dir+0x465/0x990 [ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10 [ 38.595432] ext4_rmdir.part.0+0x29a/0xd10 [ 38.595441] ? __dquot_initialize+0x2a7/0xbf0 [ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10 [ 38.595464] ? __pfx___dquot_initialize+0x10/0x10 [ 38.595478] ? down_write+0xdb/0x140 [ 38.595487] ? __pfx_down_write+0x10/0x10 [ 38.595497] ext4_rmdir+0xee/0x140 [ 38.595506] vfs_rmdir+0x209/0x670 [ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190 [ 38.595529] do_rmdir+0x363/0x3c0 [ 38.595537] ? __pfx_do_rmdir+0x10/0x10 [ 38.595544] ? strncpy_from_user+0x1ff/0x2e0 [ 38.595561] __x64_sys_unlinkat+0xf0/0x130 [ 38.595570] do_syscall_64+0x5b/0x180 [ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e2025-04-18
CVE-2025-37750In the Linux kernel, the following vulnerability has been resolved: smb: client: fix UAF in decryption with multichannel After commit f7025d861694 ("smb: client: allocate crypto only for primary server") and commit b0abcd65ec54 ("smb: client: fix UAF in async decryption"), the channels started reusing AEAD TFM from primary channel to perform synchronous decryption, but that can't done as there could be multiple cifsd threads (one per channel) simultaneously accessing it to perform decryption. This fixes the following KASAN splat when running fstest generic/249 with 'vers=3.1.1,multichannel,max_channels=4,seal' against Windows Server 2022: BUG: KASAN: slab-use-after-free in gf128mul_4k_lle+0xba/0x110 Read of size 8 at addr ffff8881046c18a0 by task cifsd/986 CPU: 3 UID: 0 PID: 986 Comm: cifsd Not tainted 6.15.0-rc1 #1 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41 04/01/2014 Call Trace: dump_stack_lvl+0x5d/0x80 print_report+0x156/0x528 ? gf128mul_4k_lle+0xba/0x110 ? __virt_addr_valid+0x145/0x300 ? __phys_addr+0x46/0x90 ? gf128mul_4k_lle+0xba/0x110 kasan_report+0xdf/0x1a0 ? gf128mul_4k_lle+0xba/0x110 gf128mul_4k_lle+0xba/0x110 ghash_update+0x189/0x210 shash_ahash_update+0x295/0x370 ? __pfx_shash_ahash_update+0x10/0x10 ? __pfx_shash_ahash_update+0x10/0x10 ? __pfx_extract_iter_to_sg+0x10/0x10 ? ___kmalloc_large_node+0x10e/0x180 ? __asan_memset+0x23/0x50 crypto_ahash_update+0x3c/0xc0 gcm_hash_assoc_remain_continue+0x93/0xc0 crypt_message+0xe09/0xec0 [cifs] ? __pfx_crypt_message+0x10/0x10 [cifs] ? _raw_spin_unlock+0x23/0x40 ? __pfx_cifs_readv_from_socket+0x10/0x10 [cifs] decrypt_raw_data+0x229/0x380 [cifs] ? __pfx_decrypt_raw_data+0x10/0x10 [cifs] ? __pfx_cifs_read_iter_from_socket+0x10/0x10 [cifs] smb3_receive_transform+0x837/0xc80 [cifs] ? __pfx_smb3_receive_transform+0x10/0x10 [cifs] ? __pfx___might_resched+0x10/0x10 ? __pfx_smb3_is_transform_hdr+0x10/0x10 [cifs] cifs_demultiplex_thread+0x692/0x1570 [cifs] ? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs] ? rcu_is_watching+0x20/0x50 ? rcu_lockdep_current_cpu_online+0x62/0xb0 ? find_held_lock+0x32/0x90 ? kvm_sched_clock_read+0x11/0x20 ? local_clock_noinstr+0xd/0xd0 ? trace_irq_enable.constprop.0+0xa8/0xe0 ? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs] kthread+0x1fe/0x380 ? kthread+0x10f/0x380 ? __pfx_kthread+0x10/0x10 ? local_clock_noinstr+0xd/0xd0 ? ret_from_fork+0x1b/0x60 ? local_clock+0x15/0x30 ? lock_release+0x29b/0x390 ? rcu_is_watching+0x20/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 2025-05-01
CVE-2025-37749In the Linux kernel, the following vulnerability has been resolved: net: ppp: Add bound checking for skb data on ppp_sync_txmung Ensure we have enough data in linear buffer from skb before accessing initial bytes. This prevents potential out-of-bounds accesses when processing short packets. When ppp_sync_txmung receives an incoming package with an empty payload: (remote) gef p *(struct pppoe_hdr *) (skb->head + skb->network_header) $18 = { type = 0x1, ver = 0x1, code = 0x0, sid = 0x2, length = 0x0, tag = 0xffff8880371cdb96 } from the skb struct (trimmed) tail = 0x16, end = 0x140, head = 0xffff88803346f400 "4", data = 0xffff88803346f416 ":\377", truesize = 0x380, len = 0x0, data_len = 0x0, mac_len = 0xe, hdr_len = 0x0, it is not safe to access data[2]. [pabeni@redhat.com: fixed subj typo]2025-05-01
CVE-2025-37738In the Linux kernel, the following vulnerability has been resolved: ext4: ignore xattrs past end Once inside 'ext4_xattr_inode_dec_ref_all' we should ignore xattrs entries past the 'end' entry. This fixes the following KASAN reported issue: ================================================================== BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 Read of size 4 at addr ffff888012c120c4 by task repro/2065 CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack_lvl+0x1fd/0x300 ? tcp_gro_dev_warn+0x260/0x260 ? _printk+0xc0/0x100 ? read_lock_is_recursive+0x10/0x10 ? irq_work_queue+0x72/0xf0 ? __virt_addr_valid+0x17b/0x4b0 print_address_description+0x78/0x390 print_report+0x107/0x1f0 ? __virt_addr_valid+0x17b/0x4b0 ? __virt_addr_valid+0x3ff/0x4b0 ? __phys_addr+0xb5/0x160 ? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 kasan_report+0xcc/0x100 ? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 ? ext4_xattr_delete_inode+0xd30/0xd30 ? __ext4_journal_ensure_credits+0x5f0/0x5f0 ? __ext4_journal_ensure_credits+0x2b/0x5f0 ? inode_update_timestamps+0x410/0x410 ext4_xattr_delete_inode+0xb64/0xd30 ? ext4_truncate+0xb70/0xdc0 ? ext4_expand_extra_isize_ea+0x1d20/0x1d20 ? __ext4_mark_inode_dirty+0x670/0x670 ? ext4_journal_check_start+0x16f/0x240 ? ext4_inode_is_fast_symlink+0x2f2/0x3a0 ext4_evict_inode+0xc8c/0xff0 ? ext4_inode_is_fast_symlink+0x3a0/0x3a0 ? do_raw_spin_unlock+0x53/0x8a0 ? ext4_inode_is_fast_symlink+0x3a0/0x3a0 evict+0x4ac/0x950 ? proc_nr_inodes+0x310/0x310 ? trace_ext4_drop_inode+0xa2/0x220 ? _raw_spin_unlock+0x1a/0x30 ? iput+0x4cb/0x7e0 do_unlinkat+0x495/0x7c0 ? try_break_deleg+0x120/0x120 ? 0xffffffff81000000 ? __check_object_size+0x15a/0x210 ? strncpy_from_user+0x13e/0x250 ? getname_flags+0x1dc/0x530 __x64_sys_unlinkat+0xc8/0xf0 do_syscall_64+0x65/0x110 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x434ffd Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8 RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107 RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001 The buggy address belongs to the object at ffff888012c12000 which belongs to the cache filp of size 360 The buggy address is located 196 bytes inside of freed 360-byte region [ffff888012c12000, ffff888012c12168) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12 head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x40(head|node=0|zone=0) page_type: f5(slab) raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004 raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000 head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004 head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000 head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000 head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc ffff888012c12180: fc fc fc fc fc fc fc fc fc ---truncated---2025-05-01
CVE-2025-3576A vulnerability in the MIT Kerberos implementation allows GSSAPI-protected messages using RC4-HMAC-MD5 to be spoofed due to weaknesses in the MD5 checksum design. If RC4 is preferred over stronger encryption types, an attacker could exploit MD5 collisions to forge message integrity codes. This may lead to unauthorized message tampering.2025-04-15
CVE-2025-3523When an email contains multiple attachments with external links via the X-Mozilla-External-Attachment-URL header, only the last link is shown when hovering over any attachment. Although the correct link is used on click, the misleading hover text could trick users into downloading content from untrusted sources. This vulnerability affects Thunderbird < 137.0.2 and Thunderbird < 128.9.2.2025-04-15
CVE-2025-3522Thunderbird processes the X-Mozilla-External-Attachment-URL header to handle attachments which can be hosted externally. When an email is opened, Thunderbird accesses the specified URL to determine file size, and navigates to it when the user clicks the attachment. Because the URL is not validated or sanitized, it can reference internal resources like chrome:// or SMB share file:// links, potentially leading to hashed Windows credential leakage and opening the door to more serious security issues. This vulnerability affects Thunderbird < 137.0.2 and Thunderbird < 128.9.2.2025-04-15
CVE-2025-32914A flaw was found in libsoup, where the soup_multipart_new_from_message() function is vulnerable to an out-of-bounds read. This flaw allows a malicious HTTP client to induce the libsoup server to read out of bounds.2025-04-14
CVE-2025-32913A flaw was found in libsoup, where the soup_message_headers_get_content_disposition() function is vulnerable to a NULL pointer dereference. This flaw allows a malicious HTTP peer to crash a libsoup client or server that uses this function.2025-04-14
CVE-2025-32911A use-after-free type vulnerability was found in libsoup, in the soup_message_headers_get_content_disposition() function. This flaw allows a malicious HTTP client to cause memory corruption in the libsoup server.2025-04-15
CVE-2025-32910A flaw was found in libsoup, where soup_auth_digest_authenticate() is vulnerable to a NULL pointer dereference. This issue may cause the libsoup client to crash.2025-04-14
CVE-2025-32909A flaw was found in libsoup. SoupContentSniffer may be vulnerable to a NULL pointer dereference in the sniff_mp4 function. The HTTP server may cause the libsoup client to crash.2025-04-14
CVE-2025-32907A flaw was found in libsoup. The implementation of HTTP range requests is vulnerable to a resource consumption attack. This flaw allows a malicious client to request the same range many times in a single HTTP request, causing the server to use large amounts of memory. This does not allow for a full denial of service.2025-04-14
CVE-2025-32906A flaw was found in libsoup, where the soup_headers_parse_request() function may be vulnerable to an out-of-bound read. This flaw allows a malicious user to use a specially crafted HTTP request to crash the HTTP server.2025-04-14
CVE-2025-32803In some cases, Kea log files or lease files may be world-readable. This issue affects Kea versions 2.4.0 through 2.4.1, 2.6.0 through 2.6.2, and 2.7.0 through 2.7.8.2025-05-28
CVE-2025-32802Kea configuration and API directives can be used to overwrite arbitrary files, subject to permissions granted to Kea. Many common configurations run Kea as root, leave the API entry points unsecured by default, and/or place the control sockets in insecure paths. This issue affects Kea versions 2.4.0 through 2.4.1, 2.6.0 through 2.6.2, and 2.7.0 through 2.7.8.2025-05-28
CVE-2025-32801Kea configuration and API directives can be used to load a malicious hook library. Many common configurations run Kea as root, leave the API entry points unsecured by default, and/or place the control sockets in insecure paths. This issue affects Kea versions 2.4.0 through 2.4.1, 2.6.0 through 2.6.2, and 2.7.0 through 2.7.8.2025-05-28
CVE-2025-3277An integer overflow can be triggered in SQLite's function. The resulting, truncated integer is then used to allocate a buffer. When SQLite then writes the resulting string to the buffer, it uses the original, untruncated size and thus a wild Heap Buffer overflow of size ~4GB can be triggered. This can result in arbitrary code execution.2025-04-14
CVE-2025-32414In libxml2 before 2.13.8 and 2.14.x before 2.14.2, out-of-bounds memory access can occur in the Python API (Python bindings) because of an incorrect return value. This occurs in xmlPythonFileRead and xmlPythonFileReadRaw because of a difference between bytes and characters.2025-04-08
CVE-2025-32053A flaw was found in libsoup. A vulnerability in sniff_feed_or_html() and skip_insignificant_space() functions may lead to a heap buffer over-read.2025-04-03
CVE-2025-32052A flaw was found in libsoup. A vulnerability in the sniff_unknown() function may lead to heap buffer over-read.2025-04-03
CVE-2025-32050A flaw was found in libsoup. The libsoup append_param_quoted() function may contain an overflow bug resulting in a buffer under-read.2025-04-03
CVE-2025-32049A flaw was found in libsoup. The SoupWebsocketConnection may accept a large WebSocket message, which may cause libsoup to allocate memory and lead to a denial of service (DoS).2025-04-03
CVE-2025-3155A flaw was found in Yelp. The Gnome user help application allows the help document to execute arbitrary scripts. This vulnerability allows malicious users to input help documents, which may exfiltrate user files to an external environment.2025-04-03
CVE-2025-31498c-ares is an asynchronous resolver library. From 1.32.3 through 1.34.4, there is a use-after-free in read_answers() when process_answer() may re-enqueue a query either due to a DNS Cookie Failure or when the upstream server does not properly support EDNS, or possibly on TCP queries if the remote closed the connection immediately after a response. If there was an issue trying to put that new transaction on the wire, it would close the connection handle, but read_answers() was still expecting the connection handle to be available to possibly dequeue other responses. In theory a remote attacker might be able to trigger this by flooding the target with ICMP UNREACHABLE packets if they also control the upstream nameserver and can return a result with one of those conditions, this has been untested. Otherwise only a local attacker might be able to change system behavior to make send()/write() return a failure condition. This vulnerability is fixed in 1.34.5.2025-04-08
CVE-2025-31492mod_auth_openidc is an OpenID Certified authentication and authorization module for the Apache 2.x HTTP server that implements the OpenID Connect Relying Party functionality. Prior to 2.4.16.11, a bug in a mod_auth_openidc results in disclosure of protected content to unauthenticated users. The conditions for disclosure are an OIDCProviderAuthRequestMethod POST, a valid account, and there mustn't be any application-level gateway (or load balancer etc) protecting the server. When you request a protected resource, the response includes the HTTP status, the HTTP headers, the intended response (the self-submitting form), and the protected resource (with no headers). This is an example of a request for a protected resource, including all the data returned. In the case where mod_auth_openidc returns a form, it has to return OK from check_userid so as not to go down the error path in httpd. This means httpd will try to issue the protected resource. oidc_content_handler is called early, which has the opportunity to prevent the normal output being issued by httpd. oidc_content_handler has a number of checks for when it intervenes, but it doesn't check for this case, so the handler returns DECLINED. Consequently, httpd appends the protected content to the response. The issue has been patched in mod_auth_openidc versions >= 2.4.16.11.2025-04-06
CVE-2025-31257This issue was addressed with improved memory handling. This issue is fixed in watchOS 11.5, tvOS 18.5, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, Safari 18.5. Processing maliciously crafted web content may lead to an unexpected Safari crash.2025-05-12
CVE-2025-31205The issue was addressed with improved checks. This issue is fixed in watchOS 11.5, tvOS 18.5, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, Safari 18.5. A malicious website may exfiltrate data cross-origin.2025-05-12
CVE-2025-31115XZ Utils provide a general-purpose data-compression library plus command-line tools. In XZ Utils 5.3.3alpha to 5.8.0, the multithreaded .xz decoder in liblzma has a bug where invalid input can at least result in a crash. The effects include heap use after free and writing to an address based on the null pointer plus an offset. Applications and libraries that use the lzma_stream_decoder_mt function are affected. The bug has been fixed in XZ Utils 5.8.1, and the fix has been committed to the v5.4, v5.6, v5.8, and master branches in the xz Git repository. No new release packages will be made from the old stable branches, but a standalone patch is available that applies to all affected releases.2025-04-03
CVE-2025-30698Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: 2D). Supported versions that are affected are Oracle Java SE: 8u441, 8u441-perf, 11.0.26, 17.0.14, 21.0.6, 24; Oracle GraalVM for JDK: 17.0.14, 21.0.6, 24; Oracle GraalVM Enterprise Edition: 20.3.17 and 21.3.13. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L).2025-04-15
CVE-2025-30691Vulnerability in Oracle Java SE (component: Compiler). Supported versions that are affected are Oracle Java SE: 21.0.6, 24; Oracle GraalVM for JDK: 21.0.6 and 24. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE accessible data as well as unauthorized read access to a subset of Oracle Java SE accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).2025-04-15
CVE-2025-30472Corosync through 3.1.9, if encryption is disabled or the attacker knows the encryption key, has a stack-based buffer overflow in orf_token_endian_convert in exec/totemsrp.c via a large UDP packet.2025-03-22
CVE-2025-30427A use-after-free issue was addressed with improved memory management. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash.2025-03-31
CVE-2025-30399Untrusted search path in .NET and Visual Studio allows an unauthorized attacker to execute code over a network.2025-06-13
CVE-2025-3030Memory safety bugs present in Firefox 136, Thunderbird 136, Firefox ESR 128.8, and Thunderbird 128.8. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 137, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9.2025-04-01
CVE-2025-3029A crafted URL containing specific Unicode characters could have hidden the true origin of the page, resulting in a potential spoofing attack. This vulnerability affects Firefox < 137, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9.2025-04-01
CVE-2025-3028JavaScript code running while transforming a document with the XSLTProcessor could lead to a use-after-free. This vulnerability affects Firefox < 137, Firefox ESR < 115.22, Firefox ESR < 128.9, Thunderbird < 137, and Thunderbird < 128.9.2025-04-01
CVE-2025-30204golang-jwt is a Go implementation of JSON Web Tokens. Starting in version 3.2.0 and prior to versions 5.2.2 and 4.5.2, the function parse.ParseUnverified splits (via a call to strings.Split) its argument (which is untrusted data) on periods. As a result, in the face of a malicious request whose Authorization header consists of Bearer followed by many period characters, a call to that function incurs allocations to the tune of O(n) bytes (where n stands for the length of the function's argument), with a constant factor of about 16. This issue is fixed in 5.2.2 and 4.5.2.2025-03-21
CVE-2025-2830By crafting a malformed file name for an attachment in a multipart message, an attacker can trick Thunderbird into including a directory listing of /tmp when the message is forwarded or edited as a new message. This vulnerability could allow attackers to disclose sensitive information from the victim's system. This vulnerability is not limited to Linux; similar behavior has been observed on Windows as well. This vulnerability affects Thunderbird < 137.0.2 and Thunderbird < 128.9.2.2025-04-15
CVE-2025-2817Thunderbird's update mechanism allowed a medium-integrity user process to interfere with the SYSTEM-level updater by manipulating the file-locking behavior. By injecting code into the user-privileged process, an attacker could bypass intended access controls, allowing SYSTEM-level file operations on paths controlled by a non-privileged user and enabling privilege escalation. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.2025-04-29
CVE-2025-2784A flaw was found in libsoup. The package is vulnerable to a heap buffer over-read when sniffing content via the skip_insight_whitespace() function. Libsoup clients may read one byte out-of-bounds in response to a crafted HTTP response by an HTTP server.2025-04-03
CVE-2025-27832An issue was discovered in Artifex Ghostscript before 10.05.0. The NPDL device has a Compression buffer overflow for contrib/japanese/gdevnpdl.c.2025-03-25
CVE-2025-27516Jinja is an extensible templating engine. Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6.2025-03-05
CVE-2025-27363An out of bounds write exists in FreeType versions 2.13.0 and below (newer versions of FreeType are not vulnerable) when attempting to parse font subglyph structures related to TrueType GX and variable font files. The vulnerable code assigns a signed short value to an unsigned long and then adds a static value causing it to wrap around and allocate too small of a heap buffer. The code then writes up to 6 signed long integers out of bounds relative to this buffer. This may result in arbitrary code execution. This vulnerability may have been exploited in the wild.2025-03-11
CVE-2025-27221In the URI gem before 1.0.3 for Ruby, the URI handling methods (URI.join, URI#merge, URI#+) have an inadvertent leakage of authentication credentials because userinfo is retained even after changing the host.2025-03-04
CVE-2025-27220In the CGI gem before 0.4.2 for Ruby, a Regular Expression Denial of Service (ReDoS) vulnerability exists in the Util#escapeElement method.2025-03-04
Previous51 - 100Next

Copyright (c) 2015, 2018, Oracle Corporation. All Rights Reserved.